Abstract:
A biomedical sensor is disclosed that includes a conductive material for coupling to monitoring equipment, and a composite. The composite includes a polymeric material and a polar material that is substantially dispersed within the polymeric material. The composite has a first side that is coupled to the conductive material and has a second side that is positionable with respect to a subject to be monitored. The polar material exhibits molecular compatibility with the polymeric material such that the polar material neither blooms to a surface of the polymeric material nor crystallizes within the polymeric material.
Abstract:
A biomedical sensor system is disclosed that includes a high impedance conductive electrode having an electrode impedance of at least about 20 kΩ/sq-mil, and a dielectric material on a first side of the electrode for receiving a discharge of an electrical signal from the dielectric material responsive to the presence of a time varying signal adjacent a second side of the dielectric material that is opposite the first side.
Abstract:
An alternating current responsive composite is disclosed. The composite includes a polymeric material and a polar material that is substantially dispersed within the polymeric material. The polar material is responsive to the presence of an alternating current.
Abstract:
A composite is disclosed for use in electro-luminescent devices. The composite includes polymeric material having a first surface energy, and phosphorescent material dispersed within said polymeric material. The phosphorescent material has a second surface energy, said first and second surface energies are each between about 32 dynes/cm and 46 about dynes/cm. The polymeric material has a moisture vapor transmission rate of at least one gram/100 sq. inches for a 24 hour period at 100° F. for a one mil thick barrier.
Abstract:
A release liner for use with face stocks for pressure sensitive labels, tapes, decals and other products formed from sheet and roll stock. A filled polymer is laminated to one side of a paper web. An extrudate is laminated to the other side of the paper substrate to form a release liner. The filled polymer has paper-like properties and replaces paper tissue back liners.
Abstract:
A frangible label which includes a plurality of integrally joined layers deposited successively on a removable carrier film. One or more of the layers are electrically conductive and configured to define an electrical circuit. The label is transferrable from the carrier film onto a receiving surface and is otherwise inseparable from the carrier film without attendant disruption of the circuit. In an alternative embodiment, the label includes an adhesive layer for applying the label to a substrate, such that the plurality of integrally joined layers including the electrical circuit are transferrable to the receiving surface and are otherwise inseparable from the carrier film without destruction of the electrical circuit.
Abstract:
A tamper resistant label having a film to which non-adherent and visible indicia are applied. The film, with the non-adherent visible indicia is thereafter corona treated, and a layer of the same material or a material with the same index of refraction as the non-adherent visible indicia is applied, overlying the film. In this arrangement, any removal of the film does not affect the visible indicia, but the region in the vicinity of the visible indicia is destroyed. The non-adherent visible indicia may take the form of any predetermined pattern such as the term void to indicate to a viewer that the overlying protective film has been removed.
Abstract:
A biomedical sensor system is disclosed that includes a high impedance conductive electrode having an electrode impedance of at least about 20 kΩ/sq-mil, and a dielectric material on a first side of the electrode for receiving a discharge of an electrical signal from the dielectric material responsive to the presence of a time varying signal adjacent a second side of the dielectric material that is opposite the first side.
Abstract:
A biomedical sensor system is disclosed that includes a plurality of electrodes and a contiguous adhesive material that is in contact with each of the plurality of electrodes. In certain embodiments a method is provided that includes the step of applying a first surface of adhesive material to a patient wherein the adhesive material includes at least two electrodes on second surface thereof that is opposite the first surface. The method also includes the step of receiving a time varying signal a first electrode of the at least two electrodes at a first location such that the time varying signal is not received at a second electrode of the at least two electrodes.
Abstract:
An electrically conductive composite is disclosed that includes a dielectric material having a first side and a second side, conductive particles within the dielectric material layer, and a discontinuous layer of a conductive material on a first side of the dielectric layer. The conductive particles are aligned to form a plurality of conductive paths from the first side to the second side of the dielectric material, and each of the conductive paths is formed of at least a plurality of conductive particles. The discontinuous layer includes a plurality of non-mutually connected portions that cover portions of, but not all of, the first side of the dielectric material such that exposed portions of the underlying first side of the dielectric material remain exposed through the discontinuous layer, yet the discontinuous layer facilitates the electronic coupling together of a plurality of the conductive paths from the first side to the second side of the dielectric material.