Abstract:
A display device comprises scan lines on a insulating substrate, signal lines intersecting with the scan lines with an insulating film interposed therebetween, a display area comprising pixel electrodes connected to the signal lines, a scan line driver circuit connected to the scan lines, a signal line driver circuit connected to the signal lines. The scan line driver circuit and the signal line driver circuit are mounted directly on the insulating substrate outside of the display area and close to one side of the display area. Lines connecting the scan line driver circuit and the signal line driver circuit are formed in an area in which the scan line driver circuit and the signal line driver circuit are mounted.
Abstract:
A liquid crystal display device for color display comprising a transmission type liquid crystal panel capable of controlling an amount of transmission light and a backlight disposed behind the liquid crystal panel capable of emitting three colors of light separately in a time-dividing manner, in which three data corresponding to the three colors of the backlight are displayed sequentially to thereby make the backlight emit a corresponding color in a period corresponding to data to be displayed. The switching can be performed manually or in response to outside signal, between a sequence in which the backlight emits three colors separately one time in one display period to perform color display, and a sequence in which the backlight emits three colors simultaneously three times to perform black-and-white display. The backlight emission can be switched depending on the intensity of outer light, thereby allowing switching between color display with low intensity and black-and-white display with high intensity.
Abstract:
A lamp lighting terminal 4 which is a conductive pad connected to a power supply terminal of a lamp is mounted on a surface opposite to a light emitting surface of a flat-type light source apparatus 3. Then, a terminal of a inspection device 16 is brought into contact with the lamp lighting terminal 4 to light up a liquid crystal display apparatus, thereby allowing inspection to be carried out. The flat-type light source apparatus 3 may be provided with a light guide 9 inputting lights from a light source through the side to output the light through one surface. In this configuration, inspection work at the time of lighting inspection of a liquid crystal display is simplified, and a high-quality liquid crystal display can be obtained.
Abstract:
The inverter for multi-tube type backlight includes two step-up transformers of one-side grounded type, wherein the two step-up transformers respectively output electric power to one or a plurality of cold cathode tubes, and wherein outputs of the two step-up transformers are of identical frequency but of mutually reversed phases.
Abstract:
A liquid crystal display of the present invention includes: a pair of substrates, at least one of which is transparent; a liquid crystal layer being interposed between said pair of substrates; electrodes for applying an electric field to liquid crystals molecules in said liquid crystal layer; active switching elements connected with said electrodes; an alignment film being formed on a surface of at least one of said pair of substrates, said surface being contacted with said liquid crystal layer; and an optical device for controlling a transmission of light in cooperation with alignment of said liquid crystal molecules in each pixel, said means being located on at least one said pair of substrates; wherein an aligning direction of each liquid crystal molecule in each pixel is ranged between null2 degree to null2 degrees with respect to an average aligning direction null1c of said liquid crystal layer.
Abstract:
By using a metal thin film comprising a layer of metal and a layer obtained by adding nitrogen atoms to metal for a metal thin film which becomes a gate electrode and the like, and for a metal thin film which becomes a source electrode and a drain electrode, there is prepared electro-optic elements free from display defects caused by high contact resistance at connected portion of the pixel electrode with the above electrodes even when a low resistance line material is used.
Abstract:
The display device includes the lead line connected to pixels, the line terminal connected to the lead line and connected to the terminal of the drive circuit mounted directly on the insulating substrate by the conductive material through the transparent conductive film, the external terminal to be connected to an external unit, an external line connected to the external terminal, and an external line terminal connected to the external line and connected directly to the terminal of the drive circuit by the conductive material. The surface of the line terminal to be connected to the transparent conductive film is formed by the high resistance conductive film, and the surface of the external line terminal to be connected to the terminal of the drive circuit by the conductive material is formed by the low resistance conductive film.
Abstract:
A method of driving a liquid crystal display device of IPS mode is disclosed. The liquid crystal display device includes a pair of substrates, a liquid crystal layer placed between the substrates, gate lines placed above one of the substrates, source lines placed to cross the gate lines with an insulative layer interposed therebetween, a switching element placed near the crossing point of the gate lines and the source lines, and a pixel electrode connected to the source lines through the switching element. A signal voltage required for image display is supplied to the pixel electrode by the source line through the switching element. The method sets an average value of the signal voltage in such a way that an average value of a positive polarity voltage and a negative polarity voltage of the pixel electrode varies with a grayscale to be displayed, and inputs the average value of the signal voltage to the pixel electrode.
Abstract:
A display apparatus has an insulating substrate, a signal line for transmitting a signal to a pixel formed in a display area on the insulating substrate, a driver integrated circuit (IC) mounted outside of the display area of the insulating substrate and electrically connected to the signal line, and an inspection pad formed outside of the display area and electrically connected to the signal line. The inspection pad is covered with resin.
Abstract:
The object of the present invention is to provide a transmission type display device which is composed of a light source having plural emission colors and which can control the chromaticity of display images, maintain it with high precision, and be manufactured at low cost by easing the spectral sensitivity requirements required for the chromaticity sensor. The transmission type display device of the present invention is provided with plural light sources having different emission colors and which displays color images by making the light emitted from said light sources pass through a color-blending part and controlling the light by an optical shutter. The transmission type display device of the invention includes: at least three light detection devices installed in positions inward to said light source than said optical shutter; and a light source control circuit which controls the emission intensities of said light sources of different colors to keep the display chromaticity constant so that the sensitivity reading values of said light detection devices are kept constant, wherein the spectral sensitivities of said light detection devices have characteristics the same as or approximated to the characteristics obtained by making the sum of the real number multiples of luminosity spectral characteristics be multiplied by the spectral transmittance from said light sources to the display surface and then be divided by the spectral transmittance from said light sources to the positions where said light detection devices are installed.