Abstract:
A coaxial transmitter optical subassembly (TOSA) including an optical fiber coupling receptacle coupled to a laser package may be used in an optical transceiver for transmitting an optical signal at a channel wavelength. The optical fiber coupling receptacle may include a housing having a first open end to receive a ferrule-terminated optical fiber. The receptacle may also include a fiber-coupling ferrule holding an optical fiber segment and secured within the housing to optically couple the optical fiber segment to a laser of the TOSA through a second open end of the housing opposite the first open end. The receptacle may further include a sleeve disposed on an interior surface of the housing to provide a cavity to secure the ferrule-terminated optical fiber and align the optical fiber to the optical fiber segment.
Abstract:
A dual testing system and method is used to perform both optical power and wavelength measurements on laser light emitted from a laser diode, such as a chip-on-submount (COS) laser diode or a laser diode in a bar laser. A testing fixture may be used to facilitate both measurements by simultaneously detecting the light for performing a first test including the optical power measurement(s) and reflecting the light for performing a second test including the wavelength measurement(s). The testing fixture may include an angled photodetector and an optical coupling system such as a collimating lens, a focal lens and an optical waveguide. The testing fixture may be electrically connected to an optical power testing module, such as a light-current-voltage (LIV) testing module, for performing the optical power measurement(s) and may be optically coupled to a wavelength measurement module, such as an optical spectrum analyzer (OSA) for performing the wavelength measurement(s).
Abstract:
A pluggable optical transceiver module for being plugged in a housing is provided. The housing has a cover and an elastic piece, and the cover has an accommodating space. One end of the elastic piece is connected to the cover while the other end has a first fastening portion. The first fastening portion is located on one side of the accommodating space. The pluggable optical transceiver module comprises a base and a sliding member. The base comprises a base body and a second fastening portion. The base body has a guide surface, and the second fastening portion is next to the guide surface. The base is for being plugged in the accommodating space, and the second fastening portion is fastened with the first fastening portion. The sliding member comprises a body section and a push section connected to each other. The body section is slidably disposed on the base.
Abstract:
A multi-channel receiver optical subassembly (ROSA) including at least one sidewall receptacle configured to receive and electrically isolate an adjacent multi-channel transmitter optical subassembly (TOSA) is disclosed. The multi-channel ROSA includes a housing with at least first and second sidewalls, with the first sidewall being opposite the second sidewall and including at least one sidewall opening configured to fixedly attach to photodiode assemblies. The second sidewall includes at least one sidewall receptacle configured to receive at least a portion of an optical component package, such as a transistor outline (TO) can laser package, of an adjacent multi-channel TOSA, and provide electrical isolation between the ROSA housing and the TOSA within an optical transceiver. The sidewall receptacle can include non-conductive material in regions that directly or otherwise come into close proximity with the optical component package of the adjacent TOSA.
Abstract:
A parallel cavity tunable laser generally includes a semiconductor laser body defining a plurality of parallel laser cavities with a common output. Each of the parallel laser cavities is configured to be driven independently to generate laser light at a wavelength within a different respective wavelength range. The wavelength of the light generated in each of the laser cavities may be tuned, in response to a temperature change, to a channel wavelength within the respective wavelength range. The laser light generated in each selected one of the laser cavities is emitted from the common output at a front facet of the laser body. By selectively generating light in one or more of the laser cavities, one or more channel wavelengths may be selected for lasing and transmission.
Abstract:
A multi-channel optical transceiver includes a multi-channel transmitter optical subassembly (TOSA), a multi-channel receiver optical subassembly (ROSA), and a dual fiber type direct link adapter directly linked to the multi-channel TOSA and the multi-channel ROSA with optical fibers. The dual fiber type direct link adapter is also configured to receive pluggable optical connectors, such as LC connectors, mounted at the end of fiber-optic cables including optical fibers for carrying optical signals to and from the transceiver. The dual fiber type direct link adapter thus provides the optical input and output to the transceiver for the optical signals received by the ROSA and transmitted by the TOSA. The multi-channel optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
Abstract:
A thermally isolated multi-channel transmitter optical subassembly (TOSA) may be used in a multi-channel optical transceiver. The multi-channel TOSA generally includes an array of lasers optically coupled to an arrayed waveguide grating (AWG) to combine multiple optical signals at different channel wavelengths. The lasers, and possibly other components, are wire bonded to a thermal isolation bar. The thermal isolation bar provides an electrical connection to external circuitry and is thermally coupled to a temperature control device, such as a thermoelectric cooler (TEC). Thus, the thermal isolation bar electrically connects the lasers to the circuitry while preventing external heat from being conducted to the lasers from outside the TOSA. The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
Abstract:
Individual channels of a multiplexed laser array in a multi-channel optical transmitter are monitored at an output of an optical multiplexer. The monitoring may be used to confirm proper operation of each of the channels in the multiplexed laser array and/or to perform wavelength locking on each of the channels. Monitoring at the output of the optical multiplexer avoids the use of multiple photodetectors coupled directly to multiple lasers in the multiplexed laser array. The multiplexed laser array generally includes a plurality of laser emitters optically coupled to an optical multiplexer such as an arrayed waveguide grating (AWG). An optical transmitter with a monitored multiplexed laser array may be used, for example, in an optical line terminal (OLT) in a wavelength division multiplexed (WDM) passive optical network (PON) or in any other type of WDM optical communication system capable of transmitting optical signals on multiple channel wavelengths.
Abstract:
An optical coupling element, for coupling a light emitting element to a light transmission element, includes a light guide element. The light guide element has a light incident part, a total reflection surface and a light output part. The light incident path is formed at the light incident part corresponding to the light emitting element. The light reflection path is formed at the light output part corresponding to the light transmission element. The first included angle θ1 is formed between the light incident path and the total reflection surface and is not equal to 45 degrees. The light emitting element is adapted to emit a beam toward the total reflection surface along the light incident path by passing through the light guide element from the light incident part. Moreover, the beam is reflected by the total reflection surface and is outputted toward the light transmission element.
Abstract:
A multi-channel optical transceiver includes a multi-channel transmitter optical subassembly (TOSA), a multi-channel receiver optical subassembly (ROSA), and a dual fiber type direct link adapter directly linked to the multi-channel TOSA and the multi-channel ROSA with optical fibers. The dual fiber type direct link adapter is also configured to receive pluggable optical connectors, such as LC connectors, mounted at the end of fiber-optic cables including optical fibers for carrying optical signals to and from the transceiver. The dual fiber type direct link adapter thus provides the optical input and output to the transceiver for the optical signals received by the ROSA and transmitted by the TOSA. The multi-channel optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).