Abstract:
The present invention relates to a method for manufacturing a preform for optical fibres, wherein deposition of glass-forming compounds on the substrate takes place. The present invention furthermore relates to a method for manufacturing optical fibres, wherein one end of a solid preform is heated, after which an optical fibre is drawn from said heated end.
Abstract:
An optical transmission fiber comprises a central core having an index difference Δn1 with an outer optical cladding; a first inner cladding having an index difference Δn2 with the outer cladding; and a second buried inner cladding having an index difference Δn3 with the outer cladding of less than −3.10−3. The second buried inner cladding moreover contains Germanium in a weight concentration of between 0.5% and 7%.The fiber shows reduced bending and microbending losses whilst exhibiting the optical performances of a standard single-mode fiber (SSMF).
Abstract:
Disclosed is an optical transmission fiber having reduced bending and microbending losses that is commercially usable in FTTH or FTTC transmission systems.
Abstract:
An optical transmission fiber includes a central core having an index difference Δn1 with an outer optical cladding; a first inner cladding having an index difference Δn2 with the outer cladding; and a second buried inner cladding having an index difference Δn3 with the outer cladding of less than −3.10−3. The second buried inner cladding moreover contains Germanium in a weight concentration of between 0.5% and 7%. The fiber shows reduced bending and microbending losses whilst exhibiting the optical performances of a standard single-mode fiber (SSMF).
Abstract:
Disclosed is an optical transmission fiber having reduced bending and microbending losses that is commercially usable in FTTH or FTTC transmission systems.
Abstract:
A single mode optical transmission fiber comprises a depressed core having at least 0.41 weight percent fluorine and an index difference (|Δn1|) with pure silica greater than 1.5×10−3, a depressed cladding having at least 1.2 weight percent fluorine and an index difference (|Δn2|) with pure silica greater than 4.5×10−3 and an index difference (|Δn2|−|Δn1|) with the depressed core greater than or equal to 3×10−3.
Abstract:
Disclosed is an optical transmission fiber having reduced bending and microbending losses that is commercially usable in FTTH or FTTC transmission systems.
Abstract:
The present invention relates to a method of manufacturing an optical fiber, which method comprises the following steps: i) providing a hollow substrate tube, ii) passing doped or undoped reactive, glass-forming gases through the interior of the hollow substrate tube, iii) creating such conditions in the interior of the hollow substrate tube that deposition of glass layers onto the interior of the hollow substrate tube takes place, wherein a non-isothermal plasma is reciprocated between two reversal points along the substrate tube, wherein the velocity of movement of the plasma decreases to zero at each reversal point, iv) collapsing the substrate tube thus obtained so as to form a solid preform, and v) drawing an optical fiber from said solid preform. In addition to that, the present invention relates to a preform for manufacturing an optical fiber, as well as to an optical fiber.
Abstract:
The present invention relates to a method for manufacturing a preform for optical fibres, wherein deposition of glass-forming compounds on the substrate takes place. The present invention furthermore relates to a method for manufacturing optical fibres, wherein one end of a solid preform is heated, after which an optical fibre is drawn from said heated end.
Abstract:
The present invention relates to a method of manufacturing an optical fibre, which method comprises the following steps: i) providing a hollow substrate tube, ii) passing doped or undoped reactive, glass-forming gases through the interior of the hollow substrate tube, iii) creating such conditions in the interior of the hollow substrate tube that deposition of glass layers onto the interior of the hollow substrate tube takes place, wherein a non-isothermal plasma is reciprocated between two reversal points along the substrate tube, wherein the velocity of movement of the plasma decreases to zero at each reversal point, iv) collapsing the substrate tube thus obtained so as to form a solid preform, and v) drawing an optical fibre from said solid preform. In addition to that, the present invention relates to a preform for manufacturing an optical fibre, as well as to an optical fibre.