Abstract:
Disclosed is an optical transmission fiber having reduced bending and microbending losses that is commercially usable in FTTH or FTTC transmission systems.
Abstract:
An improved optical fiber achieves both reduced bending and microbending losses, as well as a much higher Brillouin threshold, as compared to standard transmission fibers. The optical fiber comprises a core including at least two dopants and having a refractive index difference Δn1 with an outer optical cladding, a first inner cladding having a refractive index difference Δn2 with the outer cladding, and a depressed, second inner cladding having a refractive index difference Δn3 with the outer cladding of less than −3×10−3. The radial concentration of at least one of the core dopants varies continuously over the entire core region of the optical fiber.
Abstract:
A multi-mode optical waveguide fiber including a central core region having an outer radius surrounded by an inner cladding region having an outer radius, the inner cladding region having a lower index of refraction than the central core region, wherein both the central core and inner cladding regions are doped with fluorine, wherein the refractive index profile of the central core region is of the gradient index type and the central core region in the range of rε[0-ra] comprises germanium at a maximum concentration within the range of 0.5 percent by weight to 4.0 percent by weight taken at a given radius, wherein said fiber has an Overfilled Modal Bandwidth >500 MHz·km at a wavelength of 850 nm and 1300 nm, according to IEC 60793-2-10.
Abstract:
The present invention relates to a method and a device for manufacturing optical performs, in which one or more layers of glass, doped or undoped, are deposited onto the internal surface of a hollow substrate tube, which deposition is effected by supplying one or more reactive gas mixtures of glass-forming compounds tot the interior of the hollow substrate tube and subsequently generating a non-isothermal plasma in the hollow substrate tube, after which the preform is subjected to a contraction process for the purpose of forming a massive rod, from which optical fibres are drawn.
Abstract:
An improved optical fiber achieves both reduced bending and microbending losses, as well as a much higher Brillouin threshold, as compared to standard transmission fibers. The optical fiber comprises a core including at least two dopants and having a refractive index difference Δn1 with an outer optical cladding, a first inner cladding having a refractive index difference Δn2 with the outer cladding, and a depressed, second inner cladding having a refractive index difference Δn3 with the outer cladding of less than −3×10−3. The radial concentration of at least one of the core dopants varies continuously over the entire core region of the optical fiber.
Abstract:
A single mode optical transmission fiber comprises a depressed core having at least 0.41 weight percent fluorine and an index difference (|Δn1|) with pure silica greater than 1.5×10−3, a depressed cladding having at least 1.2 weight percent fluorine and an index difference (|Δn2|) with pure silica greater than 4.5×10−3 and an index difference (|Δn2|−|Δn1|) with the depressed core greater than or equal to 3×10−3.
Abstract:
An optical transmission fiber comprises a central core having an index difference Δn1 with an outer optical cladding; a first inner cladding having an index difference Δn2 with the outer cladding; and a second buried inner cladding having an index difference Δn3 with the outer cladding of less than −3.10−3. The second buried inner cladding moreover contains Germaniumn in a weight concentration of between 0.5% and 7%. The fiber shows reduced bending and microbending losses whilst exhibiting the optical performances of a standard single-mode fiber (SSMF).
Abstract:
The present invention relates to a method and a device for manufacturing optical performs, in which one or more layers of glass, doped or undopod, are deposited onto the internal surface of a hollow substrate tube, which deposition is effected by supplying one or more reactive gas mixtures of glass-forming compounds tot the interior of the hollow substrate tube and subsequently generating a non-isothermal plasma in the hollow substrate tube, after which the preform is subjected to a contraction process for the purpose of forming a massive rod, from which optical fibres are drawn.
Abstract:
The present invention relates to a method and a device for determining the cut-off wavelength of an optical fiber. A first aspect of the present invention is to provide a method for determining the cut-off wavelength of an optical fiber, which method provides a stable measurement, which measurement is substantially independent of the exact fiber position.
Abstract:
The invention relates to a method for the use of a local area fibre optic network for enabling data communication. The method comprises the steps of supplying an intensity-modulated light signal to at least one fibre of the fibre optic network by means of a transmission unit and receiving the intensity-modulated light signal by means of the receiver unit that is connected to the fibre. The intensity of the intensity-modulated light signal is modulated for the purpose of providing a bit rate of at least 30 Gbps for the data communication. The light for providing the intensity-modulated light signal has a wavelength that ranges between 1200 nm and 1400 nm. The invention further relates to a method for altering a 10 Gigabit ethernet local area fibre optic network for the purpose of adapting the fibre optic network for data communication at a bit rate in excess of 30 Gbps. The invention also relates to a fibre optic network.