Abstract:
The sensor (1) for determining an orientation of the sensor in a gravity field comprises a ball (2) and a rolling surface (R) describing a generally concave shape on which the ball can roll inside the sensor. A further surface (F) is arranged opposite said rolling surface, and a light emitter (E), a light detector (D) and another light emitter or detector is provided. A region (R) within which the ball (2) can move is limited by at least the rolling surface (R) and the further surface (F). And the light emitters (E) and detectors (D) are arranged outside the region (R) for emitting light through the rolling surface (R) into said region and detecting light exiting the region (3) through the rolling surface (R) or for emitting light through the further surface (F) into said region (R) and detecting light exiting said region (R) through the further surface (F). Corresponding measuring methods and manufacturing methods are described, too.
Abstract:
An opto-electronic sensor module (e.g., an optical proximity sensor module) includes a substrate, a light emitter mounted on a first surface of the substrate, the light emitter being operable to emit light at a first wavelength, and a light detector mounted on the first surface of the substrate, the light detector being operable to detect light at the first wavelength. The module includes an optics member disposed substantially parallel to the substrate, and a separation member disposed between the substrate and the optics member. The separation member may surround the light emitter and the light detector, and may include a wall portion that extends from the substrate to the optics member and that separates the light emitter and the light detector from one another. The separation member may be composed, for example, a thermosetting polymer material, a UV-curing polymer material or a visible light-curing polymer material, wherein the separation member further includes one or more inorganic fillers and/or dyes that make the separation member substantially non-transparent to light detectable by the light detector and/or emitted by the light emitter.
Abstract:
A wristwatch includes a case containing electronic components of the wristwatch. An optoelectronic module including at least one light emitting element and at least one light sensing element is disposed within the case or within a fastener for the wristwatch. The optoelectronic module is operable to obtain physiological data of a person wearing the wristwatch by using the light emitting element and the light sensing element.
Abstract:
The disclosure describes light sensing optoelectronic modules that include reflective surfaces to enhance light collection and/or light emission. For example, an optoelectronic module can include a light sensing element mounted on a substrate. A spacer over the substrate has a through-hole over the light sensing element. The through-hole is defined by a surface that is at least partially sloped or curved with respect to a plane of the substrate. The surface is highly reflective for light detectable by the light sensing element. Various methods for fabricating the modules are described as well.
Abstract:
Techniques are described for holding a wafer or wafer sub-stack to facilitate further processing of the wafer of sub-stack. In some implementations, a wafer or wafer sub-stack is held by a vacuum chuck in a manner that can help reduce bending of the wafer or wafer sub-stack.
Abstract:
A device comprises at least one optics member (O) comprising at least one transparent portion (t) and at least one blocking portion (b). The at least one transparent portion (t) is made of one or more materials substantially transparent for light of at least a specific spectral range, referred to as transparent materials, and the at least one blocking portion (b) is made of one or more materials substantially non-transparent for light of the specific spectral range, referred to as non-transparent materials. The transparent portion (t) comprises at least one passive optical component (L). The at least one passive optical component (L) comprises a transparent element (6) having two opposing approximately flat surfaces substantially perpendicular to a vertical direction in a distance approximately equal to a thickness of the at least one blocking portion (b) measured along the vertical direction, and, attached to the transparent element (6), at least one optical structure (5).
Abstract:
Optoelectronic modules include an optoelectronic device and a transparent cover. A non-transparent material is provided on the sidewalls of the transparent cover, which can help reduce light leakage from the sides of the transparent cover or can help reduce stray light from entering the module. The modules can be fabricated, for example, in wafer-level processes. In some implementations, openings such as trenches are formed in a transparent wafer. The trenches then can be filled with a non-transparent material using, for example, a vacuum injection tool. When a wafer-stack including the trench-filled transparent wafer subsequently is separated into individual modules, the result is that each module can include a transparent cover having sidewalls that are covered by the non-transparent material.
Abstract:
An optical proximity sensor module includes a substrate, a light emitter mounted on a first surface of the substrate, the light emitter being operable to emit light at a first wavelength, and a light detector mounted on the first surface of the substrate, the light detector being operable to detect light at the first wavelength. The module includes an optics member disposed substantially parallel to the substrate, and a separation member, wherein the separation member is disposed between the substrate and the optics member. Multiple modules can be fabricated in a wafer-level process and can be composed of reflowable materials so that the modules can be incorporated more easily into devices whose manufacture occurs, at least in part, at elevated temperatures when the module is integrated into the device or during subsequent manufacturing processes.
Abstract:
An opto-electronic module includes a detecting channel comprising a detecting member for detecting light and an emission channel comprising an emission member for emitting light generally detectable by said detecting member. Therein, a radiation distribution characteristic for an emission of light from said emission channel is non rotationally symmetric; and/or a sensitivity distribution characteristic for a detection in said detecting channel of light incident on said detection channel is non rotationally symmetric; and/or a central or main emission direction for an emission of light from said emission channel and a central or main detection direction for a detection of light incident on said detection channel are aligned not parallel to each other; and/or at least a first one of the channels comprises one or more passive optical components.
Abstract:
Optoelectronic modules include an optoelectronic device and a transparent cover. A non-transparent material is provided on the sidewalls of the transparent cover, which can help reduce light leakage from the sides of the transparent cover or can help reduce stray light from entering the module. The modules can be fabricated, for example, in wafer-level processes. In some implementations, openings such as trenches are formed in a transparent wafer. The trenches then can be filled with a non-transparent material using, for example, a vacuum injection tool. When a wafer-stack including the trench-filled transparent wafer subsequently is separated into individual modules, the result is that each module can include a transparent cover having sidewalls that are covered by the non-transparent material.