Abstract:
A press fitting head comprising an elastic member in a part where the press fitting head contacts a semiconductor device, and an alignment mark recognition area capable of detecting an optically readable marker provided on a surface to be contacted to the semiconductor device is provided. Additionally, a semiconductor manufacturing apparatus in which the press fitting head is applied is provided.
Abstract:
A semiconductor device is provided including a package substrate, and a plurality of semiconductor chips stacked above the package substrate, at least one of the plurality of semiconductor chips including a step part in a periphery edge part of a rear surface,
Abstract:
A semiconductor package includes a first semiconductor device provided on a support substrate; a first encapsulation material covering the first semiconductor device; a first line provided on the first encapsulation material, the first line being connected with the first semiconductor device; an intermediate buffer layer covering the first line, and a second encapsulation material provided on the intermediate buffer layer. The first encapsulation material and the second encapsulation material are each formed of an insulating material different from an insulating material used to form the intermediate buffer layer. A second semiconductor device covered with the second encapsulation material may be provided on the intermediate buffer layer.
Abstract:
A stacked semiconductor package includes a first semiconductor package including a first circuit board and a first semiconductor device mounted on the first circuit board; a second semiconductor package including a second circuit board and a second semiconductor device mounted on the second circuit board, the second semiconductor package being stacked on the first semiconductor package; and a heat transfer member provided on the first semiconductor device and a part of the first circuit board, the part being around the first semiconductor device.
Abstract:
The invention provides a semiconductor device low in height and having low heat resistance, and a method of manufacturing the semiconductor device. Disclosed is a semiconductor device including: a support plate 1; a semiconductor chip 2 mounted on one principal surface of the support plate 1 via an adhesive layer, with the element circuit surface of the chip being directed upward; an insulation material layer 4 that seals the semiconductor chip 2 and the periphery of the semiconductor chip; openings formed on an electrode arranged on the element circuit surface of the semiconductor chip 2 in the insulation material layer 4; conductive portions 6 formed in the openings so as to be connected to the electrode of the semiconductor chip; a wiring layer 5 formed on the insulation material layer 4 so as to be connected to the conductive portions 6 and partially extending to the peripheral region of the semiconductor chip 2; and external electrodes 7 formed on the wiring layer 5, wherein the support plate 1 is a flat plate that constitutes the outermost layer of a combined support plate and is separated from the combined support plate in which a plurality of flat plates used in the process of manufacturing the semiconductor device is laminated to each other.
Abstract:
A semiconductor storage device 100 includes a controller package 110 having a BGA terminal on a bottom surface thereof; and one or a plurality of memory packages 120 each including a plurality of semiconductor storage elements and mounted on the controller package. The controller package includes a bottom substrate having the BGA terminal on a bottom surface thereof; a power supply IC, mounted on the bottom substrate, for supplying a plurality of power supplies; and a controller mounted on the bottom substrate and operable by the plurality of power supplies supplied from the power supply IC. The controller provides an interface with an external system via the BGA terminal and controls a read operation from the semiconductor storage elements and a write operation to the semiconductor storage elements.
Abstract:
A semiconductor device includes a rectangular lower semiconductor element; a plurality of external electrodes located in a pattern on the lower semiconductor element along sides thereof; a plurality of internal electrodes electrically connected to the plurality of external electrodes via a plurality of line patterns respectively and located on the lower semiconductor element in a pattern; dams provided in such a pattern that each of the dams encloses one or at least two external electrodes among the plurality of external electrodes; an upper semiconductor element mounted on the lower semiconductor element such that a plurality of terminals on the upper semiconductor element are electrically connected to the plurality of internal electrodes respectively; and a resin potted to flow to a space between the lower semiconductor element and the upper semiconductor element.
Abstract:
Provided is a wiring substrate and its manufacturing method in which a thick wiring layer capable of being applied with a large current and a thin wiring layer capable of being subjected to microfabrication coexist in the same layer. The wiring substrate includes: an insulating film located over a first wiring and having a via; and a second wiring over the insulating film. The second wiring has a stacked structure including a first layer and a second layer covering the first layer. The second layer is in direct contact with the first wiring in the via. A thickness of the second layer in a region overlapping with the first layer is different from a thickness of the second layer in the via.
Abstract:
Provided is a wiring substrate and its manufacturing method in which a thick wiring layer capable of being applied with a large current and a thin wiring layer capable of being subjected to microfabrication coexist in the same layer. The wiring substrate includes: an insulating film located over a first wiring and having a via; and a second wiring over the insulating film. The second wiring has a stacked structure including a first layer and a second layer covering the first layer. The second layer is in direct contact with the first wiring in the via. A thickness of the second layer in a region overlapping with the first layer is different from a thickness of the second layer in the via.
Abstract:
A semiconductor device in which an insulating material layer contains no reinforced fibers such as a glass cloth or a nonwoven cloth and which enables miniaturization of metal thin-film wiring layers, a reduction in the diameter of metal vias, and a reduction in interlayer thickness. The semiconductor device includes an insulating material layer including one or more semiconductor elements sealed with an insulating material containing no reinforced fibers, a plurality of metal thin-film wiring layers, metal vias that electrically connect the metal thin-film wiring layers together and electrodes of the semiconductor elements and the metal thin-film wiring layers together, and a warpage adjustment layer arranged on one principal surface of the insulating material layer to offset warpage of the insulating material layer to reduce warpage of the semiconductor device.