Abstract:
A method of forming a low-k dielectric layer and forming a structure in the low-k dielectric layer includes depositing a low-k dielectric layer over a substrate, performing a first treatment to the low-k dielectric layer, performing post-formation processes, and performing a second treatment to the low-k dielectric layer. The k value of the low-k dielectric layer is lowered by the first treatment. The post-formation processes performed to the low-k dielectric layer include at least one low-k dielectric material damaging process. The second treatment restores the low-k dielectric layer. Preferably, each of the first and second treatments includes a curing process selected from e-beam curing, ultraviolet curing, plasma curing, SCCO2 cleaning, and combinations thereof.
Abstract:
A method of fabricating a semiconductor device. A semiconductor substrate with a patterned conductive layer on a top surface of the substrate is first provided. A dielectric layer is then formed to cover the substrate. Thereafter, an electron beam irradiation procedure is performed to anneal the patterned conductive layer and reduce resistance of the patterned conductive layer.
Abstract:
A method of forming a low-k dielectric layer and forming a structure in the low-k dielectric layer includes depositing a low-k dielectric layer over a substrate, performing a first treatment to the low-k dielectric layer, performing post-formation processes, and performing a second treatment to the low-k dielectric layer. The k value of the low-k dielectric layer is lowered by the first treatment. The post-formation processes performed to the low-k dielectric layer include at least one low-k dielectric material damaging process. The second treatment restores the low-k dielectric layer. Preferably, each of the first and second treatments includes a curing process selected from e-beam curing, ultraviolet curing, plasma curing, SCCO2 cleaning, and combinations thereof.
Abstract:
A method of fabricating a semiconductor device. A semiconductor substrate with a patterned conductive layer on a top surface of the substrate is first provided. A dielectric layer is then formed to cover the substrate. Thereafter, an electron beam irradiation procedure is performed to anneal the patterned conductive layer and reduce resistance of the patterned conductive layer.
Abstract:
A semiconductor method of manufacturing involving low-k dielectrics is provided. The method includes depositing a hydrocarbon of the general composition CxHy on the surface of a low-k dielectric. The hydrocarbon layer is deposited by reacting a precursor material, preferably C2H4 or (CH3)2CHC6H6CH3, using a PECVD process. In accordance with embodiments of this invention, carbon diffuses into the low-k dielectric, thereby reducing low-k dielectric damage caused by plasma processing or etching. Other embodiments comprise a semiconductor device having a low-k dielectric, wherein the low-k dielectric has carbon-adjusted dielectric region adjacent a trench sidewall and a bulk dielectric region. In preferred embodiments, the carbon-adjusted dielectric region has a carbon concentration not more than about 5% less than in the bulk dielectric region.
Abstract translation:提供涉及低k电介质的半导体制造方法。 该方法包括在低k电介质的表面上沉积一般组合物C x H y Y y的烃。 烃层通过使前体材料,优选C 2 H 4 H 3或(CH 3)3 H 2, CHC 6 6 H 3 CH 3,使用PECVD法。 根据本发明的实施例,碳扩散到低k电介质中,由此降低由等离子体处理或蚀刻引起的低k电介质损伤。 其他实施例包括具有低k电介质的半导体器件,其中低k电介质具有邻近沟槽侧壁和大块电介质区域的碳调节介电区域。 在优选的实施方案中,碳调节的电介质区域的碳浓度比体电介质区域的碳浓度小约不超过约5%。
Abstract:
A semiconductor device with improved resistance to delamination and method for forming the same the method including providing a semiconductor wafer comprising a metallization layer with an uppermost etch stop layer; forming at least one adhesion promoting layer on the etch stop layer; and, forming an inter-metal dielectric (IMD) layer on the at least one adhesion promoting layer.
Abstract:
A method includes forming a metal hard mask over a low-k dielectric layer. The step of forming the metal hard mask includes depositing a sub-layer of the metal hard mask, and performing a plasma treatment on the sub-layer of the metal hard mask. The metal hard mask is patterned to form an opening. The low-k dielectric layer is etched to form a trench, wherein the step of etching is performed using the metal hard mask as an etching mask.
Abstract:
A method includes etching a low-k dielectric layer on a wafer to form an opening in the low-k dielectric layer. An amount of a detrimental substance in the wafer is measured to obtain a measurement result. Process conditions for baking the wafer are determined in response to the measurement result. The wafer is baked using the determined process conditions.
Abstract:
A dielectric layer having features etched thereon and a low dielectric constant, and that is carried by a semiconductor substrate. The etched dielectric layer is modified so its surface energy is reduced by at least one of: (a) applying thermal energy to the layer to cause the layer temperature to be between 100 C and 400 C; (b) irradiating the layer with electromagnetic energy; and/or (c) irradiating the layer with free ions.
Abstract:
A method of lithography patterning includes forming a mask layer on a material layer and forming a capping layer on the mask layer. The capping layer is a boron-containing layer with a higher resistance to an etching reaction of patterning process of the material layer. By adapting the boron-containing layer as the capping layer, the thickness of the mask layer can be thus reduced. Hence, a better gap filling for forming an interconnect metallization in the material layer could be achieved as well.