Abstract:
In one embodiment, an enclosure for housing electrical components, such as circuit boards or the like, has one or more double-walled sides that distribute a cooling fluid to the electrical components. Each of the double-walled sides has a cavity and the cavities may be coupled together along the sides where the double-walled sides join together. A supply of pressurized fluid, such as air, is supplied to the outside wall of one double-walled side. Openings in the inner walls of the double-walled sides discharge the cooling fluid into the enclosure. The openings are positioned to provide cooling fluid where needed. Nozzles may be placed in the openings to further direct and regulate the flow of the cooling fluid into the enclosure. Baffles may be placed in the cavities to direct/deflect cooling fluid to/from the inner wall openings. The walls may be made of plastic or metal and fabricated with conventional techniques.
Abstract:
A solar tracking system has a first set of solar heat gain transducers (700) that produce respective first output signals to drive a reversible first motor (300) for changing a vertical angle of a solar collector (200); and a second set of solar heat gain transducers (700) that produce respective second output signals to drive a reversible second motor (608) for changing a horizontal angle of the solar collector (200); each of the transducers (700) having a thermistor (702) in thermal contact with a thermal mass (706); and a communications apparatus (900) receiving output voltage from solar cells (202) on the solar collector (200).
Abstract:
A thermally conductive polymer composition is applied to mounted components to provide both thermal control and RF radiation attenuation. In order to improve the RF attenuation performance, a plurality of discrete conductive elements may be incorporated into the polymer composition, with the sizing, spacing and configuration of the suppressed most efficiently by the particular composition. The discrete conductive elements are significantly larger, on the order of 1-5 mils (approximately 25-127 μm) than the filler materials utilized to render the base polymer conductive. Also disclosed is an apparatus and a method for preparing and applying such a polymer composition to an electronic component.
Abstract:
An electromagnetic interference shield comprises a non-rigid porous metallic material and a conforming element. The non-rigid porous metallic material is shaped by the conforming element to have a top and sidewalls extending downward from the top. The shaped porous metallic material defines a cavity for receiving at least one circuit component therein.
Abstract:
A high-density, small fiber optic enclosure permits the cross-connection and interconnection of optical fibers, through the use of an open-faced compact layering technique. The optical fiber enters an aperture in the bottom of the enclosure which includes a first section attachable to a wall surface, and a second section connected to the first enclosure section by a hinge. The first enclosure section includes an optical fiber splice holder and a plurality of hooks and clips for holding the optical fibers. The second enclosure section includes a plurality of hooks and clips also. The fibers enter the first section, are connected to the hooks and clips, and cross over to the second section and return to the first section and ultimately pass through an exit aperture in such a fashion as to form a plurality of FIG. 8 layers. If the optical fibers are not shielded, it is possible to use two opposing S-shaped fiber tubes to protect them at the crossover between the first and second enclosure.
Abstract:
A printed circuit board is aligned to its mounting plate by using cutouts already cut for electronic components. A top plate with a notched location block and two edge locators is placed on top of both the printed circuit board and the mounting plate so that the notched block straddles two cutouts on the board and the mounting plate. At the same time, the two edge locators are placed inside the two matching cutouts. An eccentric cam is used to move a pressure plate that slides on top of the top plate and pushes both the circuit board and the mounting plate with spring action. The cam is turned until the edge locators hit the edges of the cutouts, aligning the printed circuit board to the mounting plate.