Abstract:
An anchor anchors a therapeutic device having an elongated body within a body lumen. The anchor includes a fixation member carried on the device which is adjustable from a first configuration that permits placement of the device in the body lumen to a second configuration that anchors the device within the body lumen. The anchor further includes a lock that locks the fixation member in the second configuration. The fixation member may be locked in any one of a plurality of intermediate points between the first configuration and a maximum second configuration.
Abstract:
Devices for treating mitral valve regurgitation, including a distal expandable anchor, a proximal expandable anchor, and a fixed length connecting member extending from the proximal expandable anchor to the distal expandable anchor, where at least one of the proximal and distal anchors includes first and second arm segments that extend from one end of the device toward the connecting member and the other anchor when in a collapsed delivery configuration, and where the at least one of the proximal and distal anchors that comprises the first and second arm segments has an expanded configuration in which the first and second arm segments extend radially outwardly such that the first and second arm segments extend away from one another toward the connector, and meet one another at a location axially spaced from the end of the device.
Abstract:
Devices for treating mitral valve regurgitation, including a distal expandable anchor, a proximal expandable anchor, and a fixed length connecting member extending from the proximal expandable anchor to the distal expandable anchor, where at least one of the proximal and distal anchors includes first and second arm segments that extend from one end of the device toward the connecting member and the other anchor when in a collapsed delivery configuration, and where the at least one of the proximal and distal anchors that comprises the first and second arm segments has an expanded configuration in which the first and second arm segments extend radially outwardly such that the first and second arm segments extend away from one another toward the connector, and meet one another at a location axially spaced from the end of the device.
Abstract:
An anchor anchors a therapeutic device having an elongated body within a body lumen. The anchor includes a fixation member carried on the device which is adjustable from a first configuration that permits placement of the device in the body lumen to a second configuration that anchors the device within the body lumen. The anchor further includes a lock that locks the fixation member in the second configuration. The fixation member may be locked in any one of a plurality of intermediate points between the first configuration and a maximum second configuration.
Abstract:
A lung volume reduction system is disclosed comprising an implantable device adapted to be delivered to a lung airway of a patient in a delivery configuration and to change to a deployed configuration to bend the lung airway. The invention also discloses a method of bending a lung airway of a patient comprising inserting a device into the airway in a delivery configuration and bending the device into a deployed configuration, thereby bending the airway.
Abstract:
The invention provides improved medical devices, therapeutic treatment systems, and treatment methods for treatment of the lung. A lung volume reduction system includes an implantable device having an elongate body that is sized and shaped for delivery via the airway system to a lung airway of a patient. The implant is inserted and positioned while the implant is in a delivery configuration, and is reconfigured to a deployed configuration so as to locally compress adjacent tissue of the lung, with portions of the elongate body generally moving laterally within the airway so as to laterally compress lung tissue. A plurality of such implants will often be used to treat a lung of a patient.
Abstract:
A lung volume reduction system is disclosed comprising an implantable device adapted to be delivered to a lung airway of a patient in a delivery configuration and to change to a deployed configuration to bend the lung airway. The invention also discloses a method of bending a lung airway of a patient comprising inserting a device into the airway in a delivery configuration and bending the device into a deployed configuration, thereby bending the airway.
Abstract:
An intravascular support device includes a support or reshaper wire, a proximal anchor and a distal anchor. The support wire engages a vessel wall to change the shape of tissue adjacent the vessel in which the intravascular support is placed. The anchors and support wire are designed such that the vessel in which the support is placed remains open and can be accessed by other devices if necessary. The device provides a minimal metal surface area to blood flowing within the vessel to limit the creation of thrombosis. The anchors can be locked in place to secure the support within the vessel.
Abstract:
The invention is a tissue shaping system, including a tissue shaping device with an expandable anchor and a lock; a delivery catheter; a delivery mechanism adapted to deliver the tissue shaping device from outside a patient to a target site within a lumen within the patient via the delivery catheter; and an actuator adapted to deliver an actuation force to the lock to lock the anchor in an expanded configuration. The invention is also a system adapted to percutaneously deliver and deploy a tissue shaping device at a target site within a lumen of a patient. The system includes: a handle; a delivery mechanism supported by the handle and adapted to deliver the tissue shaping device from outside the patient to the treatment site via a delivery catheter; and an actuator supported by the handle and adapted to deliver an actuation force to lock an anchor of the tissue shaping device in an expanded configuration.
Abstract:
A mitral valve annulus reshaping device includes at least a portion that is formed of a biocompatible shape memory alloy SMA having a characteristic temperature, Af, that is preferably below body temperature. The device is constrained in an unstable martensite (UM) state while being introduced through a catheter that passes through the venous system and into the coronary sinus of the heart. The reshaping device is deployed adjacent to the mitral valve annulus of the heart as it is forced from the catheter. When released from the constraint of the catheter, the SMA of the device at least partially converts from the UM state to an austenitic state and attempts to change to a programmed shape that exerts a force on the adjacent tissue and modifies the shape of the annulus. The strain of the SMA can be varied when the device is within the coronary sinus.