Abstract:
A chromatic element includes a sealed enclosure, a first heating element, a chromatic material layer, and a second heating element. The sealed enclosure includes an upper sheet and a lower sheet, and defines a room between the upper sheet and the lower sheet. The upper sheet is semitransparent. The first heating element is located on the upper sheet. The second heating element is located on the lower sheet. The chromatic material layer is located in the room. The location of the chromatic layer changes by heat from the first heating element or the second heating element.
Abstract:
A field emission device includes an insulative substrate, an electron pulling electrode, a secondary electron emission layer, a first dielectric layer, a cathode electrode, and an electron emission layer. The electron pulling electrode is located on a surface of the insulative substrate. The secondary electron emission layer is located on a surface of the electron pulling electrode. The cathode electrode is located apart from the electron pulling electrode by the first dielectric layer. The cathode electrode has a surface oriented to the electron pulling electrode and defines a first opening as an electron output portion. The electron emission layer is located on the surface of the cathode electrode and oriented to the electron pulling electrode.
Abstract:
A vacuum packaging system includes a vacuum room, a delivery apparatus, a discharge device, a second heating apparatus. The delivery apparatus transport the pre-packaged container into the vacuum room. The discharge device discharges a sealing material to seal an exhaust through hole of the pre-packaged container. The discharge device includes a vessel configured for containing sealing material, a transport pipeline, a first heating, and a controlling element. The first heating apparatus softens the sealing material into viscous liquid. The second heating apparatus is mounted on the inner wall of the vacuum room between the second hatch and the transport pipeline.
Abstract:
This invention provides a method for preparing cycloastragenol monoglucoside CMG (cycloastragenol-6-O-β-D-glucoside), comprising the steps of: a. using astragaloside IV or Astragali extracts prepared by a conventional method as raw materials and adding an appropriate solvent thereinto to form a raw material solution; b. adding hydrolase and allowing for hydrolysis at a constant temperature to obtain a hydrolysate; c. separating the hydrolysate with macroporous adsorption resin; and d. obtaining the product by purification and separation. The present invention further provides cycloastragenol-6-O-β-D-glucoside prepared according to the method of this invention as well as its use in the preparation of a medicament for treating cardiovascular diseases and pharmaceutical compositions comprising the same.
Abstract:
A method for manufacturing a field emission element includes the following steps. The insulating substrate is provided. At least one grid, a first electrode and a second electrode are formed on the insulating substrate. The first and second electrodes are within the grid. The insulating substrate having at least one grid, the first electrode and the second electrode is covered with a carbon nanotube structure. The carbon nanotube structure includes a plurality of carbon nanotubes successively extended from the second electrode to the first electrode. The carbon nanotubes between the first electrode and the second electrode are cut to form a plurality of substantially parallel electron emitters in the at least one grid. One end of each electron emitter is electrically connected to the second electrode and opposite end of each electron emitter faces towards the first electrode.
Abstract:
An exemplary flat heat pipe with an evaporator section and a condenser section includes a casing, and a first wick structure and a second wick structure in the casing. The casing defines a first vapor channel within the evaporator section. The first wick structure contacts an inner surface of the casing at the condenser section. The first wick structure includes a contact portion in contact with the inner surface of the casing, and an isolated portion from the inner surface of the casing. The isolated portion and the inner surface of the casing cooperatively define therebetween a second vapor channel in communication with the first vapor channel. The second wick structure contacts the inner surface of the casing at the evaporator section. The second wick structure joins the first wick structure at a joint between the evaporator section and the condenser section.
Abstract:
The present invention describes an aperture including: an opaque plate; two sliver openings located in the opaque plate, the two sliver openings having rectangular shapes, the two sliver openings being parallel to each other.The present invention further describes a method including: decomposing a pattern into horizontal sub-features and vertical sub-features; forming a first mask corresponding to the horizontal sub-features; forming a second mask corresponding to the vertical sub-features; forming a first aperture with two parallel horizontal sliver openings corresponding to the first mask; forming a second aperture with two parallel vertical sliver openings corresponding to the second mask; exposing a wafer using the first aperture and the first mask; exposing the wafer using the second aperture and the second mask; and exposing the wafer with the third mask.
Abstract:
A chromatic element includes a sealed enclosure, an isolation layer, a first heating element, a chromatic material layer and a second heating element. The isolation layer is disposed in the sealed enclosure and separates the sealed enclosure into a first chamber and a second chamber. The first heating element is configured to heat the first chamber. The second heating element is configured to heat the second chamber. The chromatic material layer is disposed in one of the first chamber and the second chamber. The chromatic material layer transfers from the first chamber to the second chamber in a gaseous state.
Abstract:
A computer-implemented device provides security events from publishers to subscribers. There is provided a message bus, configured to contain a plurality of security events. Also provided is a receiver unit, responsive to a plurality of publishers, to receive the plurality of security events from the publishers. There is also a queue unit, responsive to receipt of the security events, to queue the plurality of security events in the message bus. Also, there is a transport unit, responsive to the security events in the message bus, to transport the plurality of security events in the message bus to a plurality of subscribers.
Abstract:
A heat dissipation device for at least two heat-generating electronic components, includes a base, a fin set and a plurality of heat pipes. The base includes a supporting frame and at least two plates attached to a bottom of the frame for contacting with the at least two heat-generating electronic components. The fin set includes a plurality of fins on the base. The heat pipes respectively and thermally connect the at least two plates and the fin set together. A single fan is attached to the heat dissipation device for generating an airflow through the fin set to dissipate heat in the fin set absorbed from the at least two heat-generating electronic components.