Abstract:
A heat pipe includes a casing, a main wick structure received in the casing, an auxiliary wick structure received in the main wick structure, and a working fluid contained in the casing. The main wick structure is attached to an inner surface of the casing. An inner peripheral surface of the main wick structure and an outer peripheral surface of the auxiliary wick structure cooperatively define a vapor channel. The auxiliary wick structure is hollow, and extends along a longitudinal direction of the casing. A liquid channel is defined in the auxiliary wick structure. Two ends of the auxiliary wick structure are both fixed on the two ends of the casing. The working fluid is saturated in the main wick structure and the auxiliary wick structure.
Abstract:
An exemplary flat heat pipe includes a hollow, flattened casing and a first wick structure and a second wick structure received in the casing. The casing includes a top plate and a bottom plate opposite to the top plate. The first wick structure is formed by weaving wires, and the second wick structure is made of sintered metal powder. The first and second wick structures are disposed at inner sides of the bottom and top plates of the casing, respectively. The first and second wick structures contact each other. The casing defines two vapor channels at opposite lateral sides of the combined first and second wick structures, respectively. A method for manufacturing the heat pipe is also provided.
Abstract:
An exemplary flat heat pipe with an evaporator section and a condenser section includes a hollow casing, and a first wick structure and a second wick structure in the casing. The second structure contacts an inner surface of the casing at the evaporator section. The first structure at the evaporator section includes a first contact portion contacting an inner surface of the second structure, and a first isolated portion from the inner surface of the second structure. The first isolated portion and the inner surface of the second structure define a first channel therebetween. The first structure at the condenser section includes a second contact portion contacting the inner surface of the casing, and a second isolated portion from the inner surface of the casing. The second isolated portion and the inner surface of the casing define therebetween a second channel communicating with the first channel.
Abstract:
A heat pipe includes a tube body and a sealing member. The tube body is made of titanium and has a sealed end and an open end at two opposite ends of the tube body. The sealing member is attached to the open end and seals the open end of the tube body. The sealing member is made of a material selected from one of copper, aluminum, stainless steel, low-carbon steel, iron, nickel, tungsten, tantalum, molybdenum, rhenium and columbium. The sealing member seals the open end.
Abstract:
A flat heat pipe includes a casing, a wick structure received in the casing, and a working medium contained in the casing and saturated in the wick structure. The casing has an upper plate and a bottom plate opposite to the upper plate. The wick structure is attached only to the bottom plate of the casing. The wick structure spaces from the upper plate with a vapor channel defined between the upper plate and the wick structure.
Abstract:
An exemplary flat heat pipe with an evaporator section and a condenser section includes a casing, and a first wick structure and a second wick structure in the casing. The casing defines a first vapor channel within the evaporator section. The first wick structure contacts an inner surface of the casing at the condenser section. The first wick structure includes a contact portion in contact with the inner surface of the casing, and an isolated portion from the inner surface of the casing. The isolated portion and the inner surface of the casing cooperatively define therebetween a second vapor channel in communication with the first vapor channel. The second wick structure contacts the inner surface of the casing at the evaporator section. The second wick structure joins the first wick structure at a joint between the evaporator section and the condenser section.
Abstract:
A heat pipe includes a tube body and a sealing member. The tube body is made of titanium and has a sealed end and an open end at two opposite ends of the tube body. The sealing member is attached to the open end and seals the open end of the tube body. The sealing member is made of a material selected from one of copper, aluminum, stainless steel, low-carbon steel, iron, nickel, tungsten, tantalum, molybdenum, rhenium and columbium. The sealing member seals the open end.
Abstract:
An exemplary flat heat pipe includes a hollow, flattened casing and a first wick structure and a second wick structure received in the casing. The casing includes a top plate and a bottom plate opposite to the top plate. The first wick structure is formed by weaving wires, and the second wick structure is made of sintered metal powder. The first and second wick structures are disposed at inner sides of the bottom and top plates of the casing, respectively. The first and second wick structures contact each other. The casing defines two vapor channels at opposite lateral sides of the combined first and second wick structures, respectively. A method for manufacturing the heat pipe is also provided.
Abstract:
An exemplary flat heat pipe with an evaporator section and a condenser section includes a hollow casing, and a first wick structure and a second wick structure in the casing. The second structure contacts an inner surface of the casing at the evaporator section. The first structure at the evaporator section includes a first contact portion contacting an inner surface of the second structure, and a first isolated portion from the inner surface of the second structure. The first isolated portion and the inner surface of the second structure define a first channel therebetween. The first structure at the condenser section includes a second contact portion contacting the inner surface of the casing, and a second isolated portion from the inner surface of the casing. The second isolated portion and the inner surface of the casing define therebetween a second channel communicating with the first channel.
Abstract:
An exemplary flat heat pipe with an evaporator section and a condenser section at opposite ends thereof includes a hollow flat casing, a first wick structure and a solid and sintered second wick structure. The first wick structure includes a top plate and a bottom plate opposite to the top plate. The first wick structure is received in the casing, and extends from the evaporator section to the condenser section. The second wick structure is disposed in the casing at the evaporator section. The second wick structure contacts the top and bottom plates and joins the first wick structure. A method for manufacturing the heat pipe is also provided.