Abstract:
A wireless communications assembly and method for encoding and modulating data for transmission is provided. The method includes receiving primary data to be transmitted to a receiving station; selecting a data rate at which to transmit the primary data; selecting a mode associated with the data rate, the mode defining a modulation scheme and a target code rate; generating encoded data, including modifying an error correcting block format having a predefined code rate to generate the encoded data at the target code rate; and extracting at least a portion of the encoded data for modulation of a carrier signal and transmission to a receiving station.
Abstract:
A method in a wireless communications assembly of a first station having a plurality of antennas and configured to perform a beamforming procedure with a second station, the method comprising: controlling the plurality of antennas to simultaneously transmit, using a first sector of each of the plurality of antennas, a respective first beam including first frame data containing a first beam set identifier element identifying each of the plurality of antennas and each of the first sectors; subsequently controlling the plurality of antennas to simultaneously transmit, using a second sector of each of the plurality of antennas, a respective second beam including second frame data containing a second beam set identifier element identifying each of the plurality of antennas and each of the second sectors; and receiving, from the second station, first feedback data including one of the first beam set identifier element and the second beam set identifier element.
Abstract:
An antenna assembly includes a support member having opposing first and second surfaces, and a set of electrical contacts; an antenna carried on the first surface of the support member and electrically connected to the set of electrical contacts; a conductive inner ring element carried on the first surface and surrounding the antenna; and a dielectric outer ring element mounted on the first surface and surrounding the conductive inner ring.
Abstract:
A method in a wireless communications assembly having an antenna, a transceiver and a baseband processor, includes: at the transceiver: receiving, from the antenna, a modulated carrier signal having a carrier frequency and containing payload data; demodulating the carrier signal to extract a baseband signal having a baseband frequency and containing the payload data; generating from the baseband signal, at a converter, a digital baseband signal containing the payload data; at an encoder: receiving the digital baseband signal from the converter; generating an encoded digital baseband signal encoding the payload data for transmission at an operating frequency; the encoded digital baseband signal having at least a threshold proportion of signal level transitions that, when transmitted at the operating frequency, have transition frequencies outside a predefined restricted frequency band; and transmitting the encoded digital baseband signal to the baseband processor via an interface at the operating frequency.
Abstract:
A system is provided comprising: a host computing device including: a wireless transceiver; and a processor configured to generate multimedia data for transmission via the wireless transceiver; and a movably-mounted client device including: a first set of wireless transceivers; a controller connected to the output assembly and each of the wireless transceivers; the controller configured to: assess respective performance attributes for each of the first set of transceivers; and based on the performance attributes, select a transceiver from the first set to receive the multimedia data from the host computing device; and an output assembly for presenting the multimedia data.
Abstract:
A host computing device for a multimedia system includes: a processor configured to generate multimedia data for transmission to a client device; a compression/decompression device connected to the processor, the compression/decompression device configured to receive the multimedia data and generated compressed multimedia data; a communications assembly connected to the processor and including (i) a wireless transceiver and (ii) a controller configured to receive the multimedia data from the processor and the compressed multimedia data from the compression/decompression device; the controller further configured to select one of the multimedia data and the compressed multimedia data for transmission to the client device via the wireless transceiver.
Abstract:
An antenna apparatus includes a waveguide adapter plate for mounting an antenna flange and an RF system-in-package or other IC package. The waveguide adapter plate comprises a first surface and an opposing second surface and a waveguide flange interface. The waveguide flange interface comprises a waveguide channel section extending between the first surface and the second surface and a set of flange mounting holes extending from the first surface to the second surface. The waveguide adapter plate further includes a plurality of substrate alignment pins extending substantially perpendicular from the second surface.
Abstract:
An IC package includes an IC die disposed at a first surface of a substrate, which includes a signal via extending between first and second metal layers. The first metal layer is proximate to the first surface and includes a first coplanar waveguide. The first coplanar waveguide has a first signal line coupling a die bump to the signal via and has a first ground plane co-planar with the first signal line. The second metal layer is proximate to a second surface and includes a second coplanar waveguide that has a second signal line coupling the signal via to a launcher element and has a second ground plane co-planar with the second signal line. The IC package further includes a waveguide channel aperture comprising a region surrounding the launcher element and which is substantially devoid of conductive material and a via fence disposed at a perimeter of the first region.
Abstract:
An antenna apparatus includes a waveguide adapter plate for mounting an antenna flange and an RF system-in-package or other IC package. The waveguide adapter plate comprises a first surface and an opposing second surface and a waveguide flange interface. The waveguide flange interface comprises a waveguide channel section extending between the first surface and the second surface and a set of flange mounting holes extending from the first surface to the second surface. The waveguide adapter plate further includes a plurality of substrate alignment pins extending substantially perpendicular from the second surface.
Abstract:
A radio frequency module includes: a primary board including: an upper surface carrying a radio controller; and a lower surface carrying antenna control elements; a plurality of spacing elements affixed to the lower surface and having a predetermined height extending away from the lower surface; and a secondary board affixed to the primary board by the plurality of spacing elements, separated from the lower surface of the primary board by an air gap with the predetermined height; the secondary board supporting a phased array of antenna elements electromagnetically coupled with the antenna control elements.