Abstract:
The invention relates to an access network for exchanging communication signals between a transit network and at least one communication medium of a user. The communication medium is operatively connected to an exchange by means of an optical fiber connection for exchanging the communication signals, and the exchange is connected to the transit network. The fiber connection comprises at least one multimode fiber, which is bent over at least one first part of its length, in such a manner that the fiber comprises at least one complete winding in the first part thereof mainly for maintaining one or more modes of the communication signals into the fiber. Said modes have been selected from a group comprising the ground mode and one or more lower modes near the ground mode.
Abstract:
An optical transmission fiber comprises a central core having an index difference Δn1 with an outer optical cladding; a first inner cladding having an index difference Δn2 with the outer cladding; and a second buried inner cladding having an index difference Δn3 with the outer cladding of less than −3.10−3. The second buried inner cladding moreover contains Germanium in a weight concentration of between 0.5% and 7%.The fiber shows reduced bending and microbending losses whilst exhibiting the optical performances of a standard single-mode fiber (SSMF).
Abstract:
Disclosed is an optical transmission fiber having reduced bending and microbending losses that is commercially usable in FTTH or FTTC transmission systems.
Abstract:
An optical transmission fiber includes a central core having an index difference Δn1 with an outer optical cladding; a first inner cladding having an index difference Δn2 with the outer cladding; and a second buried inner cladding having an index difference Δn3 with the outer cladding of less than −3.10−3. The second buried inner cladding moreover contains Germanium in a weight concentration of between 0.5% and 7%. The fiber shows reduced bending and microbending losses whilst exhibiting the optical performances of a standard single-mode fiber (SSMF).
Abstract:
Disclosed is an optical transmission fiber having reduced bending and microbending losses that is commercially usable in FTTH or FTTC transmission systems.
Abstract:
A single mode optical transmission fiber comprises a depressed core having at least 0.41 weight percent fluorine and an index difference (|Δn1|) with pure silica greater than 1.5×10−3, a depressed cladding having at least 1.2 weight percent fluorine and an index difference (|Δn2|) with pure silica greater than 4.5×10−3 and an index difference (|Δn2|−|Δn1|) with the depressed core greater than or equal to 3×10−3.
Abstract:
A transmission fibre with optical amplification, comprising a core and a cladding. The core material is doped with a first dopant of a material having a higher index of refraction than the material of the cladding and with a second dopant of a material that converts pump energy in the form of light having a first wavelength into light having a second wavelength. The concentration of the second dopant within the core increases in radial direction in proportion to the distance to the centre of the core. The core material is preferably doped with a third dopant for compensating the variation in the refractive index caused by the second dopant. The cladding may comprise a cladding layer surrounding the core provided with a fourth and a fifth dopant for signal amplification and refractive index compensation, respectively, in the cladding layer. The dopants have been selected to enable amplification, using the Raman effect or stimulated emission.
Abstract:
Disclosed is an optical transmission fiber having reduced bending and microbending losses that is commercially usable in FTTH or FTTC transmission systems.
Abstract:
An optical fibre having an NA-value of less than 0.34, which optical fibre is built up of a core and an enveloping protective coating, wherein the protective coating forms the outer layer of the optical fibre, which optical fibre has an NA-value ranging from 0.15 to 0.30, with the overall external diameter of the optical fibre corresponding to the internal diameter of an element into which the end of the optical fibre is inserted.
Abstract:
A transmission fibre with optical amplification, comprising a core and a cladding. The core material is doped with a first dopant of a material having a higher index of refraction than the material of the cladding and with a second dopant of a material that converts pump energy in the form of light having a first wavelength into light having a second wavelength. The concentration of the second dopant within the core increases in radial direction in proportion to the distance to the centre of the core. The core material is preferably doped with a third dopant for compensating the variation in the refractive index caused by the second dopant. The cladding may comprise a cladding layer surrounding the core provided with a fourth and a fifth dopant for signal amplification and refractive index compensation, respectively, in the cladding layer. The dopants have been selected to enable amplification, using the Raman effect or stimulated emission.