Abstract:
An apparatus for estimating attitude using an inertia measuring apparatus comprising: a Kalman filter 3 adapted to receive a quantity of state ω(t) from the inertia measuring apparatus 1, input the quantity of state into a predetermined system equation and a predetermined observation equation and execute time update processing and observation update processing with regard to the system equation and the observation equation; a processing section 4 adapted to generate an estimated value of a time differentiation of a modified Rodrigues parameter α(t) based upon an output of the Kalman filter; an integral processing section 5 adapted to generate an estimated value of the modified Rodrigues parameter based upon an output of the processing section; a system propagation matrix generating section 6 adapted to update an observation sensitivity matrix based upon an initial value being given beforehand and an output of the integral processing section and supply the updated output to the Kalman filter; a transformed matrix generating section 7 adapted to generate a coordinate transformation matrix R based upon an output of the integral processing section; and an attitude estimation section 8 adapted to carry out an attitude estimation based upon an output of the transformed matrix generating section, is disclosed.
Abstract:
The invention provides a liquid crystal panel substrate having transistors and reflectors connected to the transistors on a substrate to allow bright reflection display of high quality at wide viewing angles by providing the most suitable reflection characteristics to the reflectors. Under the reflectors, first conductive layers are overlaid in regions corresponding to the reflectors and formed in a concave-convex condition by forming a large number of openings. Also, in a plan view, a light-shielding film covering gaps between the reflectors is formed of the second conductive layer, and may have no openings.
Abstract:
A pixel circuit includes: a light emitting element whose cathode is connected to a first power source for supplying a first power supply voltage; a first transistor having a first terminal connected to a data line and having a gate terminal; a second transistor connected between the gate terminal of the first transistor and a second terminal of the first transistor and having a gate terminal; a third transistor connected between the second terminal of the first transistor and an anode of the light emitting element and having a gate terminal; a fourth transistor connected between the gate terminal of the first transistor and an initialization power source and having a gate terminal; and a capacitor having one end connected to a power source for supplying a voltage having a fixed potential and the other end connected to the gate terminal of the first transistor.
Abstract:
A sensing circuit includes a first sensing element, a second sensing element, a reduction unit, a storage unit, a specifying unit and a detection unit. The reduction unit reduces the amount of the energy applied to the second sensing element. The storage unit stores a degradation characteristic of the sensing element. The specifying unit specifies a rate of degradation. The detection unit detects the amount of the energy on the basis of the rate of degradation.
Abstract:
An electro-optical device includes: an entire screen display mode and a partial display mode. In the entire screen display mode, positive and negative polarity image signals are supplied on the basis of a voltage that is greater than a voltage applied to the common electrode by a predetermined offset potential, and in the partial display mode, positive and negative polarity image signals are supplied on the basis of the voltage applied to the common electrode. In the partial display mode, the positive and negative polarity image signals are further corrected by the predetermined offset potential.
Abstract:
There is an electro-optical device. An electro-optical device includes: a plurality of scanning lines; a plurality of data lines; a plurality of pixels that are provided so as to correspond to intersections between the plurality of scanning lines and the plurality of data lines, each of the pixels has a pixel electrode, a common electrode that is disposed so as to be opposite to the pixel electrode, and a switching element that allows, when a selection voltage is applied to the scanning line, the data line and the pixel electrode to enter a conductive state; a scanning line driving circuit that supplies a selection voltage for selecting the plurality of scanning lines in a predetermined order; and a data line driving circuit that supplies, when the scanning line is selected, an image signal to the corresponding data line. Further, an entire screen display mode in which an entire screen is used as a display region and a partial display mode in which a part of the entire screen is used as a display region and the other portion is used as a non-display region are selected, in the entire screen display mode, the data line driving circuit alternately supplies a positive polarity image signal and a negative polarity image signal to the data lines on the basis of a predetermined voltage that is greater than a voltage applied to the common electrode, and in the partial display mode, the data line driving circuit alternately supplies a positive polarity image signal and a negative polarity image signal to the data lines on the basis of the voltage applied to the common electrode.