Abstract:
An optical member includes a first liquid crystal assembly and a second liquid crystal assembly. The first liquid crystal assembly has a liquid crystal layer aligned in a first direction. Light polarized in the first direction is reflected from the first liquid crystal assembly. The second liquid crystal assembly is positioned on the first liquid crystal assembly. The second liquid crystal assembly has a liquid crystal layer aligned in a second direction that is opposite to the first direction. Light polarized in the second direction is reflected from the second liquid crystal assembly. Therefore, an image display quality is improved.
Abstract:
A power supply is provided, which includes a DC-DC converter being supplied with an external DC input voltage and a first switching control signal and outputting a duty sensing signal of which a magnitude is varied in accordance with the first switching control signal, the duty sensing signal being indicative of a duty ratio of the first switching control signal, and the DC-DC converter converting the input voltage into a DC output voltage of a predetermined magnitude based on the first switching control signal; and a feedback controlling unit comparing the duty sensing signal with a first reference signal to adjust the duty ratio of the first switching control signal.
Abstract:
An LCD comprises an LCD panel on which an image is formed, a light guiding plate disposed behind the LCD panel, an LED unit disposed along at least one side of the light guiding plate and providing light to the LCD panel, a bottom chassis accommodating the light guiding plate and the LED unit, and a heat conduction member disposed across an external surface of the bottom chassis from an area facing the LED unit to an area apart from the LED unit and having a higher thermal conductivity than the bottom chassis.
Abstract:
In an optical package capable of guiding light, and an optical lens and a backlight assembly having the optical package, the optical package includes a plurality of light emitting parts and a lens plate. The lens plate defines a plurality of lens parts corresponding to the light emitting parts, respectively. The lens plate has a plurality of light guiding portions extended from the lens parts in a side direction of the optical package.
Abstract:
A power supply includes a light source, a signal converting unit converting an externally supplied AC voltage into a DC voltage, a DC-DC converting unit converting a magnitude of the DC voltage, and a light source protecting unit. The light source protecting unit outputs the DC voltage of a predetermined range as a light source driving voltage to supply a stabilized source driving voltage to the light source and suspending an application of the light source driving voltage to the light source when a magnitude of the light source driving voltage is larger than a predetermined value, based on an externally supplied control signal.
Abstract:
A planar light source device includes a light source body having at least one partition member in a space formed by first and second substrates, and at least one plasma container. Plasma is generated in a plurality of discharge regions that are connected to one another through the plasma container. The plasma container is disposed at a position adjacent to the partition member to receive a portion of the plasma. According to this configuration, distribution of the plasma in the discharge regions is uniform and luminance of the light generated from the planar light source device is uniform. As a result, the planar light source device implements a good display quality of the LCD apparatus.
Abstract:
In an eco-friendly method of recycling a fluorescent lamp capable of reducing energy consumption and a recycling apparatus for performing the recycling method, broken pieces of fluorescent lamps are heated at a temperature of about 100? to about 330? to form a gas containing a mercury vapor. The gas containing the mercury vapor is cooled at a temperature of about −38? to about 0? to form a liquid mercury. The liquid mercury is collected. Therefore, the broken pieces of the fluorescent lamps are heated at the temperature no higher than the boiling point of mercury so that an energy consumption and a size of the recycling apparatus are decreased, and a probability for the recycling apparatus to malfunction may also be decreased.
Abstract:
A flat fluorescent lamp and a display device including the same. The flat fluorescent lamp includes a lamp body that has a plurality of discharge spaces and generates light, electrodes that are formed at the both ends of the lamp body, and a plurality of cold spots that are formed on the rear surface of the lamp body.
Abstract:
A flat fluorescent lamp includes a first substrate, a second substrate, a first fluorescent layer, a second fluorescent layer, a combining member and a contacting layer. The second substrate is combined with the first substrate to form a plurality of discharge chambers spaced apart from each other. The first fluorescent layer is formed on an inner surface of the first substrate, and the second fluorescent layer is formed on an inner surface of the second substrate. The combining member is disposed between the first substrate and the second substrate. The contacting layer is formed between the discharge chambers. Thus, mercury vapor in a flat fluorescent lamp may be prevented from migrating due to a temperature difference between discharge chambers, and luminescence characteristics of a flat fluorescent lamp may be improved.
Abstract:
A backlight assembly apparatus, including a conductive receiving container, a flat fluorescent lamp provided over the conductive receiving container, and an insulating member positioned between the conductive receiving container and the flat fluorescent lamp to provide insulation.