Abstract:
A method of manufacturing a circuit board embedding a thin film capacitor, the method including: forming a sacrificial layer on a first substrate; forming a dielectric layer on the sacrificial layer; forming a first electrode layer on the dielectric layer; disposing the first substrate on the second substrate in such a way that the first electrode layer is bonded to a top of a second substrate; decomposing the sacrificial layer by irradiating a laser beam onto the sacrificial layer through the first substrate; separating the first substrate from the second substrate; and forming a second electrode layer on the dielectric layer.
Abstract:
The present invention relates to a liquid crystal panel, a liquid crystal display device and to a liquid crystal medium having a negative dielectric anisotropy Δ∈.
Abstract:
The present invention relates to a liquid-crystalline medium, characterised in that it contains a polymerisable component (A) containing one more polymerisable compounds and a liquid-crystalline component (B) containing one more compounds of the general formula I in which R, rings A1 and A2, Z1, Z2, Y1, Y2, X0 and r are as defined in Claim 1.
Abstract:
The instant invention relates to liquid crystalline media comprising a chiral component, component A, consisting of one or more chiral compounds, optionally, a bimesogenic component, component B, consisting of one or more bimesogenic compounds, a liquid crystalline component, component C, consisting of one or more liquid crystalline, respectively mesogenic compounds, and a reactive mesogenic component, component D, comprising, one or more reactive mesogenic compounds, as defined in claim 1, to their stabilization by polymerization and to the polymer-stabilised liquid crystal materials, as well as to liquid crystal displays comprising these liquid crystal media, respectively these stabilized materials, especially to USH-displays and in particular to active matrix displays and, last not least, to the processes of preparation of the respective composite systems and of the displays comprising these systems.
Abstract:
Disclosed herein are an embedded ball grid array substrate and a manufacturing method thereof. The embedded ball grid array includes: a core layer having a cavity therein; a semiconductor device embedded in the cavity of the core layer; a first circuit layer having a circuit pattern including a wire bonding pad formed thereon; a second circuit layer having a circuit pattern including a solder ball pattern formed thereon; and a wire electrically connecting the semiconductor device to the wire bonding pad.