Abstract:
The invention relates to a voltage sensing device for a high and/or medium-voltage power-carrying conductor, the voltages sensing device comprising: • a carrier element (3) with a passageway for receiving the power-carrying conductor, • wherein the carrier element comprises an electrode (4) extending in an axial direction of the passageway of the carrier element and operable as a first electrode of the voltage sensing device, wherein • a conductor (1) of the power cable is operable as the second electrode of the voltage sensing device and wherein • the carrier element has a coefficient of thermal expansion that is less than 5x10̂−6 1/K at 20 C.
Abstract:
A multilayer dielectric film including a first dielectric layer made from a material having a first breakdown field strength and a second dielectric layer disposed on the first dielectric layer made from a material having a different breakdown filed strength. A multilayer film including a first electrically conductive layer, the first dielectric layer disposed on the first electrically conductive layer, the second dielectric layer disposed on the first dielectric layer, and a second electrically conductive layer disposed on the second dielectric layer is also disclosed. The first electrically conductive layer can have at least one of an average surface roughness of at least ten nanometers, a thickness of at least ten micrometers, or an average visible light transmission of up to ten percent. The first dielectric layer may be a polymer and typically has a lower dielectric constant than the second dielectric layer, which may be ceramic.
Abstract:
Electromagnetic interference (EMI) shielding articles and methods of producing and using the same are described. The articles include electrically conductive fillers and silsesquioxane-like (SSQ-like) particles distributed inside a polymeric matrix material. In some cases, adding the SSQ-like particles leads to increased porosity of the articles which improves EMI absorbing performance.
Abstract:
A waveguide and a communication system including the waveguide are described. The waveguide is configured to propagate an electromagnetic wave having an operating frequency along the waveguide. The waveguide includes a substrate having a first dielectric constant, and an array of spaced apart unit cells at least partially embedded in the substrate and arranged along the waveguide. Each of a plurality of the unit cells in the array of spaced apart unit cells has a first transmission parameter S121 having a lowest resonant frequency Γ1 and includes a dielectric body and one or more electrically conductive layers disposed on and partially covering the dielectric body. The dielectric body has a second dielectric constant greater than the first dielectric constant at the operating frequency and has a second transmission parameter S221 having a lowest resonant frequency Γ2 greater than Γ1.
Abstract:
Conductive particles, articles including such particles, and methods of making such conductive particles, are provided; wherein the conductive particles include: a core particle including at least one of a glass, a glass-ceramic, or a metal; surface particles adhered to the core particle; and a metal coating disposed on at least a portion of the core and surface particles; wherein the core particle is larger than the surface particles.
Abstract:
The invention relates to a voltage sensing device for a high and/or medium-voltage power-carrying conductor, the voltages sensing device comprising: • a carrier element (3) with a passageway for receiving the power-carrying conductor, • wherein the carrier element comprises an electrode (4) extending in an axial direction of the passageway of the carrier element and operable as a first electrode of the voltage sensing device, wherein • a conductor (1) of the power cable is operable as the second electrode of the voltage sensing device and wherein • the carrier element has a coefficient of thermal expansion that is less than 5×10^−6 1/K at 20 C.
Abstract:
A passive temperature-sensing apparatus, which includes a capacitive sensing element that includes a capacitive sensing composition that includes a ferroelectric ceramic material that exhibits a measurable electrical Curie temperature that is below 30 degrees C. The capacitive sensing composition exhibits a negative slope of capacitance versus temperature over the temperature range of from 30 degrees C. to 150 degrees C.
Abstract:
A multilayer dielectric film including a first dielectric layer made from a material having a first breakdown field strength and a second dielectric layer disposed on the first dielectric layer made from a material having a different breakdown filed strength. A multilayer film including first and second electrically conductive layers separated by at least first and second dielectric layers is also disclosed. The first dielectric layer is disposed on the first electrically conductive layer, and the second dielectric layer is disposed on the first dielectric layer. The first electrically conductive layer can have at least one of an average surface roughness of at least ten nanometers, a thickness of at least ten micrometers, or an average visible light transmission of up to ten percent. The first dielectric layer may be a polymer and typically has a lower dielectric constant than the second dielectric layer, which may be ceramic.
Abstract:
Provided is a composition comprising a polymeric material, a filler material dispersed in the polymeric material, the filler material comprising inorganic particles and a discontinuous arrangement of conductive material wherein at least a portion of the conductive material is in durable electrical contact with the inorganic particles, and conductive material dispersed in the polymeric material.