Abstract:
A transparent electrical conductor (10; 20), comprising a transparent substrate (14; 201); a composite layer (18; 28) comprising an electrically conductive layer (12) disposed on at least a portion of a major surface of the transparent substrate (14; 201) and comprising a plurality of interconnecting metallic nanowires, and a polymeric overcoat layer (16) disposed on at least a portion of the electrically conductive layer (12); wherein a pattern in the composite layer includes an x-axis and a y-axis of an x-y plane of the composite layer and a z-axis into the x-y plane of the composite layer, and the pattern defines a plurality of electrically conductive regions (24, 24′) in the x-y plane of the composite layer (18; 28), wherein the electrically conductive regions (24, 24′) are separated from each other by electrically insulative traces (21), each of which defines a valley into the z-axis of the x-y plane of the composite layer (18; 28), the valley having a maximum depth (27) in a range from 50 nanometers to 100 nanometers relative to the x-y plane of the composite layer (18; 28), wherein the valley has a cross-sectional width (M1) in a range from 10 micrometers to 1000 micrometers, and wherein the valley further comprises a plurality of crevices (22) having a depth (23) in a range from 50 nanometers to 100 nanometers further into the z-axis of the x-y plane of the composite layer (18; 28). Methods for patternwise irradiating transparent electrodes (10; 20) to generate electrically insulating traces (21) are also described.