Abstract:
Antistatic polymers include divalent segments represented by the formula wherein R1 represents an alkyl group having from 6 to 18 carbon atoms, R2 and R3 represent alkyl groups having from 1 to 4 carbon atoms, and R4 represents an alkylene group having from 2 to 8 carbon atoms. Methods of making antistatic polymers are also disclosed.
Abstract:
Presently described are block copolymers suitable for use as a low adhesion backsize (“LAB”) coating. The block copolymers comprise at least one polyorganosiloxane block and at least one polyolefin block. The polyolefin block is semi-crystalline having a melt point of at least 110° C. The block copolymer typically has the structure: A[-L-B]n wherein A is a polyorganosiloxane block and B is a polyolefin block. L is a covalent bond or a divalent linking group. In some embodiments, L is the reaction product of an amine or hydroxyl and an anhydride.
Abstract:
Copolymers containing at least one perfluoropolyether segment and multiple aminooxalylamino groups are described. Methods of making the copolymers are also described. The copolymers can be prepared by reacting an oxalylamino-containing compound and an amine compound having at least two primary amino groups, at least two secondary amino groups, or at least one primary amino group plus at least one secondary amino group.
Abstract:
The invention relates to intermediate laminates and articles comprising a low adhesion backsize coating. The laminate comprises a substrate having a major surface and opposing surface and a coating comprising a block copolymer disposed on a major surface of the substrate wherein the block copolymer comprises a polyorganosiloxane block and a polyolefin block, the polyolefin block having a melt point of at least 110° C. Also described are medical dressings comprising such laminate.
Abstract:
Presently described are block copolymers suitable for use as a low adhesion backsize (“LAB”) coating. The block copolymers comprise at least one polyorganosiloxane block and at least one polyolefin block. The polyolefin block is semi-crystalline having a melt point of at least 110° C. The block copolymer typically has the structure: A[-L-B]n wherein A is a polyorganosiloxane block and B is a polyolefin block. L is a covalent bond or a divalent linking group. In some embodiments, L is the reaction product of an amine or hydroxyl and an anhydride.
Abstract:
Presently described are articles, such as optical displays and protective films, comprising a (e.g. light transmissive) substrate having a surface layer comprising the reaction product of a mixture comprising a non-fluorinated binder precursor (e.g. of a hardcoat composition) and at least one polymerizable perfluoropolyether polymer. The resulting cured surface layer can advantageously exhibit low lint attraction in combination with low surface energy. Also described are one-step and two-step methods of synthesizing perfluoropolyether polymers having polymerizable ethylenically unsaturated groups.
Abstract:
The composition includes a polyester resin comprising at least one α,β-unsaturated ester group, an epoxy resin, a compound comprising at least one hydroxyl group; and a photoinitiator that generates acid on exposure to actinic radiation. A method of repairing a damaged surface using the composition is also described.
Abstract:
The composition includes at least one of a dicyclopentadiene-modified unsaturated polyester resin or an ethylene glycol fumarate unsaturated polyester resin; a vinyl ester represented by formula R—[C(O)—O—CH═CH2]n wherein R is alkyl, aryl, or a combination thereof, and n is 1 or 2; a tertiary amine; and inorganic filler. A method of repairing a damaged surface using the composition C is also described.
Abstract:
Compositions include a water-soluble copolymer, a hydrophilic silane compound, and in some embodiments surfactant dispersed in a liquid phase. Methods of using the compositions to coat and optionally clean a substrate are also disclosed.
Abstract:
Methods for improving color uniformity across an LCD backlight unit having a viewable area, a downconversion film element and blue LEDS comprise increasing blue light absorption while reflecting red and green light in at least one edge of the viewable area.