Abstract:
An electronic device may be provided with an electronic compass. The electronic compass may include magnetic sensors. The magnetic sensors may include thin-film magnetic sensor elements such as giant magnetoresistance sensor elements. Magnetic flux concentrators may be used to guide magnetic fields through the sensor elements. The magnetic flux concentrators may be configured to reduce the angular sensitivity of the magnetic sensors. A magnetic flux concentrator may be formed from multiple stacked layers of soft magnetic material separated by non-magnetic material. The non-magnetic material may have a thickness allows the magnetic layers to magnetically couple through the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction.
Abstract:
A portable consumer electronics device has a handheld portable device housing, and an electronic camera module integrated in the housing. The module has a focusing lens with an optical axis, an imaging sensor to receive the focused light, and an electro-optic variable aperture to allow different amounts of focused light to reach the imaging sensor. The aperture has a stack that includes a front transparent conductor medium, an electrolyte medium, an active electro-chromic medium, and a rear transparent conductor medium. The front transparent conductor medium contains an outer region and an inner region. The inner region is aligned with the optical axis, surrounded by the outer region, and electrically isolated from the outer region. Other embodiments are also described and claimed.
Abstract:
An electro-optic aperture has a stack that includes a front transparent conductor medium, an active electro-chromic medium, and a rear transparent conductor medium. The front and rear transparent conductor mediums are directly connected to each other by a conductive section located within the imaging path. Other embodiments are also described and claimed.
Abstract:
An electronic device may be provided with electronic components such as buttons and environmental sensors. An environmental sensor may be temperature sensor for gathering temperature data associated with the environment surrounding the device. The temperature sensor may be mounted to a button member for the button. The button member may be an actuating member that moves within an opening in a device housing and that extends beyond an outer surface of the housing into the surrounding environment. The button member may be arranged so that an internal electronic switch is activated when the button member is moved within the opening. The button member may be thermally isolated from other device structures using insulating material on the button member. The button member may be formed from a thermally conductive material that transmits the temperature of environmental materials that contact the button member to the temperature sensor.
Abstract:
In some embodiments, a microelectromechanical system may include a semiconductor substrate, a plurality of wiring layers, and a stop. The plurality of wiring layers may be coupled to a first surface of the semiconductor substrate. The stop may be coupled to the plurality of wiring layers. In some embodiments, at least a portion of the plurality of wiring layers between the stop and the first surface of the substrate comprises an insulating material. In some embodiments, at least the portion excludes wiring within. In some embodiments, a volume of the portion may be determined by a use of the microelectromechanical system. In some embodiments, the portion may inhibit, during use, electrical failures adjacent to the stop.
Abstract:
An electronic device may be provided with electronic components such as buttons and environmental sensors. An environmental sensor may be temperature sensor for gathering temperature data associated with the environment surrounding the device. The temperature sensor may be mounted to a button member for the button. The button member may be an actuating member that moves within an opening in a device housing and that extends beyond an outer surface of the housing into the surrounding environment. The button member may be arranged so that an internal electronic switch is activated when the button member is moved within the opening. The button member may be thermally isolated from other device structures using insulating material on the button member. The button member may be formed from a thermally conductive material that transmits the temperature of environmental materials that contact the button member to the temperature sensor.
Abstract:
A personal audio device has a bone conduction pickup transducer, having a housing of which a rigid outer wall has an opening formed therein. A volume of yielding material fills the opening in the rigid outer wall. An electronic vibration sensing element is embedded in the volume of yielding material. The housing is shaped, and the opening is located, so that the volume of yielding material comes into contact with an ear or cheek of a user who is using the personal audio device. Other embodiments are also described and claimed.
Abstract:
A portable electronic device may include a housing member defining a side surface of the portable electronic device, a portion of the housing member defining a side wall of a hole extending through the housing member, a button member positioned along the side surface and defining a chassis portion and a hollow post extending into the hole defined through the housing member, and a first waterproof seal defined between the hollow post and the side wall of the hole. The portable electronic device may also include a biometric sensing component coupled to the chassis portion, a flexible circuit element extending through the hollow post and conductively coupling the biometric sensing component to a component within the housing, and a second waterproof seal defined within the hollow post.
Abstract:
Electronic assemblies and methods of attaching retention structures are described. The electronic assemblies may include a receiving substrate and a retention structure bonded to the receiving substrate. The retention structure may be patterned to include openings such as slot openings or a fishbone pattern in order to receive a pair of solder joints to bond the retention structure to a top side of the receiving substrate.
Abstract:
An acoustic imaging system includes multiple transducers disposed to circumscribe a portion of substrate. An acoustic imaging system also includes a controller and an image resolver. The transducers convert electrical signals into mechanical energy and/or mechanical energy into electrical signals. The controller is adapted to apply an electrical signal to the transducers which, in response, induce a mechanical wave, such as a surface wave, into the circumscribed portion. The controller is also adapted to receive electrical signals from the transducers. The image resolver uses the electrical signals received by the controller in order to construct an image of an object in physical contact with the substrate.