Abstract:
An electronic device may have a display and a rear housing. A coating may be formed on an inner surface of a display cover layer for the display or on an inner surface of the rear housing. The coating may include one or more inorganic layers such as inorganic layers in a thin-film interference filter or other layer of material. A buffer layer having a polymer with adhesion promotion additive and embedded silicon oxide particles may be interposed between the coating and a glass layer forming the rear housing or between a patterned indium tin oxide coating on a display cover layer and an adhesive layer that attaches a pixel array to the display cover layer.
Abstract:
An electronic device may have components such as a display, a camera, a button, and other electrical components. A transparent crystalline member such as a layer of aluminum oxide, zirconium oxide, or other crystalline dielectric structure may overlap an electrical component and may serve as a display cover layer, button cover member, or window member. An annealed adhesion layer such as an annealed inorganic layer may be formed on a crystalline dielectric member. The annealed adhesion layer may help adhere an oleophobic coating to the transparent crystalline member.
Abstract:
An electronic device may include electrical components and other components mounted within an interior of a housing. The device may have a display on a front face of the device and may have a glass layer that forms part of the housing on a rear face of the device. The glass layer may be provided with regions having different appearances. The regions may be textured, may have coatings such as thin-film interference filter coatings formed from stacks of dielectric material having alternating indices of refraction, may have metal coating layers, and/or may have ink coating layers. Textured surfaces may be formed on thin glass layers and polymer films that are coupled to the glass layer. A glass layer may be formed from a pair of coupled glass layers. The coupled layers may have one or more recesses or other structures to visually distinguish different regions of the glass layer.
Abstract:
An electronic device may include electrical components and other components mounted within an interior of a housing. The device may have a display on a front face of the device and may have a glass layer that forms part of the housing on a rear face of the device. The glass layer may be provided with regions having different appearances. The regions may be textured, may have coatings such as thin-film interference filter coatings formed from stacks of dielectric material having alternating indices of refraction, may have metal coating layers, and/or may have ink coating layers. Textured surfaces may be formed on thin glass layers and polymer films that are coupled to the glass layer. A glass layer may be formed from a pair of coupled glass layers. The coupled layers may have one or more recesses or other structures to visually distinguish different regions of the glass layer.
Abstract:
An electronic device may have components such as a display, a camera, a button, and other electrical components. A transparent crystalline member such as a layer of aluminum oxide, zirconium oxide, or other crystalline dielectric structure may overlap an electrical component and may serve as a display cover layer, button cover member, or window member. An annealed adhesion layer such as an annealed inorganic layer may be formed on a crystalline dielectric member. The annealed adhesion layer may help adhere an oleophobic coating to the transparent crystalline member.
Abstract:
A transparent component of an electronic device having a nano-crystalline layer is disclosed. The nano-crystalline layer may be formed as a series of layers separated by or interspersed with one or more other layers including a non-crystalline or amorphous material. The series of layers may also be interspersed with one or more anti-reflective layers configured to reduce optical reflections off the transparent component. The nano-crystalline layer may be formed by a deposition process or by an ion-implanting and annealing process to form crystals having a size of less than 10 nanometers. The protective coatings may be utilized on portions of an electronic device, such as a housing or a cover glass, to protect the electronic device from scratching and/or damage caused by impact.
Abstract:
A foldable electronic device may bend about a bend axis. A foldable display panel may be configured to bend along the bend axis as the foldable device is folded. A display cover layer may overlap the display panel. The display panel may have an array of pixels configured to display an image viewable through the display cover layer. The display cover layer may be formed from a layer of glass. A recess may be formed in the layer of glass that runs parallel to the bend axis and that overlaps the bend axis. The recess forms a flexible locally thinned portion in the glass that allows the display cover layer to bend. A rough surface texture and polymer coating may be provided in the recess. The recess may have shallowly sloping walls.
Abstract:
A foldable electronic device may bend about a bend axis. A foldable display panel may be configured to bend along the bend axis as the foldable device is folded. A display cover layer may overlap the display panel. The display panel may have an array of pixels configured to display an image viewable through the display cover layer. The display cover layer may be formed from a layer of glass. A recess may be formed in the layer of glass that runs parallel to the bend axis and that overlaps the bend axis. The recess forms a flexible locally thinned portion in the glass that allows the display cover layer to bend. A rough surface texture and polymer coating may be provided in the recess. The recess may have shallowly sloping walls.
Abstract:
A foldable electronic device may bend about a bend axis. A foldable display panel may be configured to bend along the bend axis as the foldable device is folded. A display cover layer may overlap the display panel. The display panel may have an array of pixels configured to display an image viewable through the display cover layer. The display cover layer may be formed from a layer of glass. A recess may be formed in the layer of glass that runs parallel to the bend axis and that overlaps the bend axis. The recess forms a flexible locally thinned portion in the glass that allows the display cover layer to bend. A rough surface texture and polymer coating may be provided in the recess. The recess may have shallowly sloping walls.
Abstract:
An electronic device may include electrical components and other components mounted within a housing. The device may have a display on a front face of the device and may have a glass layer that forms part of the housing on a rear face of the device. The glass layer and other glass structures in the electronic device may be provided with coatings. An interior coating on a glass layer may include multiple layers of material such as an adhesion promotion layer, thin-film layers of materials such as silicon, niobium oxide and other metal oxides, and metals to help adjust the appearance of the coating. A metal layer may be formed on top of the coating to serve as an environmental protection layer and opacity enhancement layer. In some configurations, the coating may include four layers.