Abstract:
A prosthesis that when implanted in the gastrointestinal tract does not impede the normal function of the pyloric sphincter. In some instances, the prosthesis is implanted as part of, or after, a sleeve gastrectomy procedure. The prosthesis includes a stent with an outer surface and a polymeric cover fully covering the outer surface of the stent. The stent includes a proximal stent flange; a proximal stent segment extending distally from the proximal stent flange; and an enlarged stent segment extending distally from the proximal stent segment.
Abstract:
A method for reducing mucus accumulation in an airway including disposing an implantable device within an airway, wherein the implantable device has a first end, a second end, and an inner surface defining a lumen extending from the first end to the second end; wherein at least a portion of the inner surface has a hydrophobic polymer coating thereon, wherein a polymer coating surface has dynamic water contact angles of 145 degrees or greater; and wherein the implantable device is constructed and arranged to maintain patency of the airway; wherein accumulation of mucus is reduced as compared to a similar implantable device without the hydrophobic portion of the inner surface. An implantable medical device having a superhydrophobic surface and a method of making an implantable medical device having a superhydrophobic surface are also provided. An implantable medical device having a micropatterned surface with enhanced adhesion to tissue, optionally in combination with other region(s) having a superhydrophobic surface and a method of making such a device. Methods and devices for prevention of bacterial adhesion to implanted medical devices.
Abstract:
An endoscopic stent for implantation in a patient after sleeve gastrectomy or biliopancreatic diversion with duodenal switch or biliopancreatic diversion with duodenal switch comprising a stent portion, the stent portion comprising a proximal end portion, the proximal end portion defined by a length of about 50 mm to about 200 mm, an enlarged middle portion, a middle portion having an enlarged diameter relative to the proximal end portion and the distal end portion and defined by a length of about 20 mm to about 80 mm, and a distal end portion and a polymeric sleeve portion engaged to and extending distally from the distal end portion of the stent.
Abstract:
An implantable, radially distensible stent includes a tubular structure having opposed open ends. The wall of the stent is made from a shape memory polymeric material. Grooves may be disposed within an outer surface of stent wall to improve flexibility and drainage of the stent.
Abstract:
The invention relates to an implantable radiopaque stent adapted to be disposed in a body lumen. In one aspect of the invention, a plurality of elongate filaments including one or more radiopaque filaments are arranged to form a hollow tubular structure having a tubular wall that defines an inner surface and an outer surface and opposing first open end and second open end. One of the open ends of the stent is formed by an intersection of adjacent filament ends. A radiopaque compound is applied to the intersection, the radiopaque compound comprising radiopaque material and polymeric material. The radiopaque compound and radiopaque filament provide improved external imaging of the tubular structure on imaging equipment.
Abstract:
An delivery device including an inner tube having an inner tube proximal end region and an inner tube distal end region, the inner tube distal end region comprising a first retaining mechanism; a middle tube having a middle tube distal end region and a middle tube proximal end region and defining a middle tube lumen, the inner tube disposed within the middle tube lumen; and an outer tube having an outer tube proximal end region and an outer tube distal end region and defining an outer tube lumen, the middle tube disposed within the outer tube lumen, the outer tube distal end region comprising a second retaining mechanism; wherein the inner tube is structured and arranged to displace proximally and distally relative to the middle tube, and wherein the outer tube is structured and arranged to displace proximally and distally relative to the middle tube. A method of deploying an endoprosthesis is also disclosed.
Abstract:
A stent that includes a plurality of quill filaments. Each quill filament includes filament material, a surface, and a plurality of quills. Each quill has a tip, a body, and a base where the body extends from the base to the tip. The quill filaments can be interwoven to form the stent or the quill filaments can be engaged to the framework of a stent.
Abstract:
A stent having an inner surface and an outer surface, at least a portion of the outer surface of the stent comprising a tacky biocompatible coating comprising a tacky polymer material and to methods of delivering and deploying a stent using a tacky biocompatible coating comprising a tacky polymer material.
Abstract:
The present disclosure pertains to medical devices that comprise a stent body having two ends, a central region therebetween, and comprising structural elements extending around the stent body and a covering material disposed over the stent body, the covering material covering only a portion of the stent body, in which the covering material is provided with a plurality of openings that provide areas where the stent body is not covered by the covering material. The present disclosure further pertains to medical apparatuses that comprise such medical devices and methods of treatment using such medical devices.