Abstract:
The present disclosure relates to the field of medical devices with anti-migration capabilities, such as anti-migration surfaces. Specifically, the present disclosure relates to methods for covalently bonding tissue-adhesive functional groups to the outer surface of a medical device to provide a medical device with an anti-migration surface.
Abstract:
An example method for obtaining a biopsy sample may include delivering a tumor marker to a patient, guiding a biopsy tool to a desired biopsy region within a patient's body, obtaining a biopsy sample from the desired biopsy region, removing the biopsy sample from the patient's body, and after removing the biopsy sample from the patient's body, scanning the biopsy sample to detect the presence of the tumor marker in the patient.
Abstract:
A stent having an inner surface and an outer surface, at least a portion of the outer surface of the stent comprising a tacky biocompatible coating comprising a tacky polymer material and to methods of delivering and deploying a stent using a tacky biocompatible coating comprising a tacky polymer material.
Abstract:
Medical devices and method for manufacturing medical devices are discloses. An example medical device may include a medical device body formed from one or more multi-melting point polymeric filaments. Each of the filaments may include a polymeric blend comprising a first block polymer and a second polymer. The polymeric blend may have a first melting point and a second melting point less than the first melting point. The medical device body may be heat set at a temperature within 10° C. of the second melting point.
Abstract:
Compositions and related kits and methods for treating a target site of a patient are described herein. The composition may include a hemostatic agent and a pH agent, for example. Methods of treatment include delivering and applying the hemostatic agent and the pH agent to a gastrointestinal system of a patient via a medical device to reduce bleeding of tissue in the gastrointestinal system.
Abstract:
Implementations of a delivery device and method are disclosed. One implementation is a delivery device comprising a flow chamber with an inlet port for receiving a fluid flow in the flow chamber, and an outlet port for exiting a material from the flow chamber. The flow chamber may include a formation portion in which a suspension of the material is formed, and a collection portion that directs the suspension toward and/or into the outlet port. An amount of the material may collect in the collection portion adjacent the outlet port. The device may further comprise an insertion port for permitting insertion of the material in the flow chamber, and/or a pusher operable to move the amount of material through the outlet port. Related devices and methods also are disclosed.
Abstract:
A medical system includes a propellant source containing a propellant fluid, containers containing a material, and a shaft having a plurality of lumens, each of the plurality of lumens having a first opening at a proximal end of the shaft and a second opening at a distal end of the shaft. The plurality of lumens are fluidly coupled to one or more of the propellant source and at least one of the plurality of containers, and a first lumen surrounds, is coaxial with, or is side-by-side with, at least one other lumen.
Abstract:
Stent delivery systems and methods for making and using stent delivery systems are disclosed. An example stent delivery system may include an inner shaft. A deployment sheath may be disposed about the inner shaft. A stent may be disposed between the inner shaft and the deployment sheath. A stent reconstraining member may be secured to an inner surface of the deployment sheath and releasably secured to the stent.
Abstract:
Implementations of a delivery device and method are disclosed. One implementation is a delivery device comprising a flow chamber with an inlet port for receiving a fluid flow in the flow chamber, and an outlet port for exiting a material from the flow chamber. The flow chamber may include a formation portion in which a suspension of the material is formed, and a collection portion that directs the suspension toward and/or into the outlet port. An amount of the material may collect in the collection portion adjacent the outlet port. The device may further comprise an insertion port for permitting insertion of the material in the flow chamber, and/or a pusher operable to move the amount of material through the outlet port. Related devices and methods also are disclosed.
Abstract:
In various aspects, the present disclosure pertains to methods of treating or preventing bleeding at a tissue site comprising applying a chitosan powder composition to the tissue site. In various aspects, the present disclosure pertains to chitosan powder compositions for application to a tissue site, where the powder compositions comprise a chitosan salt, a crosslinked chitosan, a derivatized chitosan, or a combination thereof. In various aspects, the disclosure pertains to catheter assemblies, which are preloaded with a chitosan powder composition and which are configured to deliver the chitosan powder composition a tissue site.