Abstract:
Using this special dual damascene process, interconnect conducting lines and via contacts are formed which have low parasitic capacitance (low RC time constants). The invention incorporates the use of thin etch stop or etch barrier layers. The key process steps of this invention are a special partial via hole etch and a special via hole liner. The Prior Art dual damascene processes are generally composed of a thick via etch stop layer to avoid damaging underlying Cu during via patterning, as well as, a thick trench etch stop layer to avoid via hole facet during trench patterning. Thick etch stop layers are undesirably due to high dielectric constant values compared with silicon oxide, the intermetal dielectric (IMD). Therefore, the thickness of stop-layer should be reduced to minimize the circuit (RC) time constant delay. In general, there are two main approaches for dual damascene etching. One of the main approaches use self-aligned dual damascene (SADD) etching which requires a thick trench etching stop-layer thickness. The other approach use counter-bore method which requires a thick via etching stop-layer thickness. This invention describes a novel dual damascene process which can minimize the thickness of both via and trench etching stop-layer, while avoiding deleterious damage to the underlying to and via facet profile during via and trench etching.
Abstract:
A method for etching of sub-quarter micron openings in insulative layers for contacts and vias is described. The method uses hardmask formed of carbon enriched titanium nitride. The hardmask has a high selectivity for etching contact and via openings in relatively thick insulative layers. The high selectivity requires a relatively thin hardmask which can be readily patterned by thin photoresist masks, making the process highly desirable for DUV photolithography. The hardmask is formed by MOCVD using a metallorganic titanium precursor. By proper selection of the MOCVD deposition conditions, a controlled amount of carbon is incorporated into the TiN film. The carbon is released as the hardmask erodes during plasma etching and participates in the formation of a protective polymer coating along the sidewalls of the opening being etched in the insulative layer. The protective sidewall polymer inhibits lateral chemical etching and results in openings with smooth, straight, and near-vertical sidewalls without loss of dimensional integrity.
Abstract:
A method is achieved for fabricating small contact holes in an interlevel dielectric (ILD) layer for integrated circuits. The method increases the ILD etch rate while reducing residue build-up on the contact hole sidewall. This provides a very desirable process for making contact holes small than 0.25 um in width. After depositing the ILD layer over the partially completed integrated circuit which includes patterned doped first polysilicon layers, a second polysilicon layer is deposited and doped with carbon by ion implantation. A photoresist mask is used to etch openings in the carbon doped polysilicon layer to form a hard mask. The photoresist is removed, and the contact holes are plasma etched in the ILD layer while free carbon released from the hard mask, during etching, reduces the free oxygen in the plasma. This results in an enhanced fluorine (F.sup.+) etch rate for the contact holes in the ILD layer and reduces the residue build-up on the sidewalls of the contact holes. The hard mask is anneal in O.sub.2 to form an oxide layer and any surface carbon is removed in a wet etch. Reliable metal plugs can now be formed by depositing a barrier layer, such as titanium (Ti) or titanium nitride (TiN) and a metal such as tungsten (W) and etching back or chemical/mechanical polishing back to the oxide layer.
Abstract:
A method of forming shallow isolation trenches in integrated circuit wafers which prevents wafer damage due to dislocations or the like occurring at sharp corners at the intersection between the sidewalls and bottom of the trench. A trench is formed in the wafer using a series of reactive ion etching steps. The bottom of the trench is then etched using reactive ion etching with etching parameters chosen to produce dry isotropic etching. The dry isotropic etching of the bottom of the trench results in a rounded bottom and sharp corners between the sidewalls and bottom of the trench are avoided.
Abstract:
A process for forming a shallow trench having steep sidewalls near its bottom and sloping sidewalls at the top is described. The process is in 3 stages. The first stage involves methane trifluoride, carbon tetrafluoride, argon, and oxygen. The second stage involves methane trifluoride and methane monofluoride, while the third stage involves hydrogen bromide, chlorine, and helium/oxygen. If the ratio of the various components at each stage is carefully controlled along with other variables such as discharge power, pressure, and duration, the trench profile described above is obtained with a minimum of deposited polymer material on the sidewalls.
Abstract:
A method for forming a chlorine containing plasma etched patterned layer. There is first provided a substrate 10 employed within a microelectronics fabrication. There is then formed over the substrate a blanket target layer 12 formed of a material susceptible to etching within a second plasma employing a chlorine containing etchant gas composition. There is then formed upon the blanket target a blanket hard mask layer 14 formed of a material selected from the group consisting of silsesquioxane spin-on-glass (SOG) materials and amorphous carbon materials. There is then formed upon the blanket hard mask layer a patterned photoresist layer 16. There is then etched while employing the patterned photoresist layer as a first etch mask layer and while employing a first plasma employing a fluorine containing etchant gas composition the blanket hard mask layer to form a patterned hard mask layer. Finally, there is then etched while employing at least the patterned hard mask layer as a second etch mask layer and while employing the second plasma employing the chlorine containing etchant gas composition the blanket target layer to form the patterned target layer.
Abstract:
Provided is a method of preventing or treating gastroesophageal reflux disease, including administering to an subject in need thereof a composition including a plurality of fibers formed of β-1-4-glucan, wherein the fibers have a diameter between 15 nm and 35 nm and a mean length of between 1.5 μm and 3.5 μm.
Abstract:
In many applications, the assessment of the internal structures of tubular structures (such as in medical imaging, blood vessels, bronchi, and colon) has become a topic of high interest. Many 3D visualization techniques, such as “fly-through” and curved planar reformation (CPR), have been used for visualization of the lumens for medical applications. However, all the existing visualization techniques generate highly distorted images of real objects. This invention provides direct manipulation based on the centerline of the object and visualization of the 3D internal structures of a tubular object without any noticeable distortion. For the first time ever, the lumens of a human colon is visualized as it is in reality. In many medical applications, this can be used for diagnosis, planning of surgery or stent placements, etc. and consequently improves the quality of healthcare significantly. The same technique can be used in many other applications.
Abstract:
The present disclosure involves a FinFET. The FinFET includes a fin structure formed over a substrate. A gate dielectric layer is least partially wrapped around a segment of the fin structure. The gate dielectric layer contains a high-k gate dielectric material. The FinFET includes a polysilicon layer conformally formed on the gate dielectric layer. The FinFET includes a metal gate electrode layer formed over the polysilicon layer. The present disclosure provides a method of fabricating a FinFET. The method includes providing a fin structure containing a semiconductor material. The method includes forming a gate dielectric layer over the fin structure, the gate dielectric layer being at least partially wrapped around the fin structure. The method includes forming a polysilicon layer over the gate dielectric layer, wherein the polysilicon layer is formed in a conformal manner. The method includes forming a dummy gate layer over the polysilicon layer.
Abstract:
The present disclosure provides a method for fabricating a semiconductor device that includes providing a silicon substrate, forming a gate stack over the silicon substrate, performing a biased dry etching process to the substrate to remove a portion of the silicon substrate, thereby forming a recess region in the silicon substrate, performing a non-biased etching process to the recess region in the silicon substrate, thereby forming a bottle-neck shaped recess region in the silicon substrate, and epi-growing a semiconductor material in the bottle-neck shaped recess region in the silicon substrate. An embodiment may include a biased dry etching process including adding HeO2 gas and HBr gas. An embodiment may include performing a first biased dry etching process including N2 gas and performing a second biased dry etching process not including N2 gas. An embodiment may include performing an oxidation process to the recess region in the silicon substrate by adding oxygen gas to form silicon oxide on a portion of the recess region in the silicon substrate. As such, these processes form polymer protection to help form the bottle-neck shaped recess.