Abstract:
A method of fabricating an electronic package. The method includes filling a mold with an electric conductor to form a number of electrical interconnects within the mold. The mold includes openings that are filled with several electric conductors to form a number of electrical interconnects. The method of fabricating an electronic package further includes attaching the mold to a substrate such that the electrical interconnects engage electrical contacts on the substrate. The method of fabricating an electronic package may further include forming conductive pads on the electrical insulator that engage the electrical interconnects and attaching a die to the substrate such that the die is electrically connected to at least some of the electrical interconnects.
Abstract:
A die assembly formed on a thin dielectric sheet is described. In one example, a first and a second die have interconnect areas. A dielectric sheet, such as glass, silicon, or oxidized metal is applied over the interconnect areas of dies. Conductive vias are formed in the dielectric sheet to connect with pads of the interconnect areas. A build-up layer includes routing to connect pads of the first die interconnect area to pads of the second die interconnect area through the conductive vias and a cover is applied over the dies, the dielectric sheet, and the build-up layer.
Abstract:
A microelectronic package, a method of forming the package and a system incorporating the package. The package includes a substrate; a die bonded to the substrate; and a thermal sensor connected to the substrate.
Abstract:
The disclosed embodiments relate to the formation of an electrical contact using a skiving technique. The electrical contact includes a spring structure that has been skived away from an underlying metal body, but the spring remains coupled with the metal body which provides a base for the spring structure. The skived spring portion of the electrical contact may comprise a cantilever-like spring, a coil-like spring, or any other suitable type of spring. Such a spring contact may be used to form an electrical connection between an integrated circuit device and a circuit board (or other substrate). Other embodiments are described and claimed.
Abstract:
The disclosed embodiments relate to the formation of an electrical contact using a skiving technique. The electrical contact includes a spring structure that has been skived away from an underlying metal body, but the spring remains coupled with the metal body which provides a base for the spring structure. The skived spring portion of the electrical contact may comprise a cantilever-like spring, a coil-like spring, or any other suitable type of spring. Such a spring contact may be used to form an electrical connection between an integrated circuit device and a circuit board (or other substrate). Other embodiments are described and claimed.
Abstract:
In some embodiments, copper-elastomer hybrid thermal interface material to cool under-substrate silicon is presented. In this regard, an apparatus is introduced having a layer of copper, a layer of elastomer, and a layer of thin film thermal interface material between the copper and elastomer layers. Other embodiments are also disclosed and claimed.
Abstract:
A microchannel structure has microchannels formed therein. The microchannels are to transport a coolant and to be proximate to an integrated circuit to transfer heat from the integrated circuit to the coolant. At least one of the microchannels has a length extent and has a first section at a first location along the length extent and a second section at a second location along the length extent. The first section of the microchannel has a first aspect ratio and the second section is divided into at least two sub-channels. Each sub-channel has a respective second aspect ratio that is greater than the first aspect ratio.
Abstract:
A thermal interface comprising a grid frame having a thermally conductive interface material coated thereon. The thermal interface is disposed between a heat source and a heat dissipation device wherein the thermally conductive material preferably melts at a temperature at or below the temperature of the heat source.
Abstract:
A novel thermal bus is shown that more effectively transmits heat away from a die of an IC. The innovative thermal bus is capable of transmitting heat to other heat dissipating devices such as heat sinks, which eventually transmit the heat out to ambient. One aspect of the thermal bus leading to increased performance includes an added path for conducting heat in addition to the path through the backside of the die. Another aspect of the thermal bus leading to increased performance includes coupling the thermal bus to the active side of the die to more directly transmit heat from the electronic devices that are generating the heat. Local hot spots are therefore minimized, and the overall average temperature of the die is reduced, which allows improved performance of the microelectronic chip, such as operating at a higher frequency for a given upper threshold temperature.
Abstract:
A method and assembly for utilizing a gasket to protect an exposed die from damage, such as chipping and cracking, caused by external forces such as shock, vibrations, installation and/or handling, as well as to prevent electromagnetic interference (EMI) emissions from the exposed die.