Abstract:
An electronic assembly and device are provided. The electronic assembly includes a first circuit board, with PCB pads located adjacent to an edge of the circuit board, and a corresponding plurality of contacts, each contact soldered to one of the PCB pads. Each contact has a first portion, soldered to the PCB pad, and a second portion that extends past the edge of the circuit board and forms a leaf spring. The leaf spring compresses when placed in contact with a PCB pad of a second circuit board, where the PCB pad is substantially coplanar with a surface of the second circuit board. A restoring force of the second portion maintains contact between the second portion and the PCB pad of the second circuit board. The contact forms an electrical connection between the PCB pad of the first circuit board and the PCB pad of the second circuit board.
Abstract:
A device and a method for manufacturing of a printed circuit board for installing in a battery-powered device, the method including mounting on a printed circuit board (PCB) a PCB surface mount component comprising a planar mount configured to be mounted on the PCB and a kinetic energy absorption element with a battery contact on a distal end of the energy absorption element, and trimming the PCB out of a panel comprising the PCB and a border around the PCB, the border connected integrally with the PCB, wherein the border comprises supports configured to support corresponding ear extensions in the absorption element in order to align the battery contact with a PCB plane.
Abstract:
Embodiments of the invention include flexible circuit board interconnections and methods regarding the same. In an embodiment, the invention includes a method of connecting a plurality of flexible circuit boards together comprising the steps applying a solder composition between an upper surface of a first flexible circuit board and a lower surface of a second flexible circuit board; holding the upper surface of the first flexible circuit board and the lower surface of the second flexible circuit board together; and reflowing the solder composition with a heat source to bond the first flexible circuit board and the second flexible circuit board together to form a flexible circuit board strip having a length longer than either of the first flexible circuit board or second flexible circuit board separately. In an embodiment the invention includes a circuit board clamp for holding flexible circuit boards together, the clamp including a u-shaped fastener; a spring tension arm connected to the u-shaped fastener; and an attachment mechanism connected to the spring tension arm. Other embodiments are also included herein.
Abstract:
A circuit board includes a plate member capable of holding a printed circuit board, the printed circuit board including an electronic component, and a cooling member provided on the electronic component, the printed circuit board and the electronic component being positioned between the plate member and the cooling member; and a circuit provided to the plate member and allowed to be electrically connected with the printed circuit board.
Abstract:
A resilient electrical connector assembly includes a base PCB and stacked layers of interconnected resilient conductive structures where each structure has at least two resilient conductive strips and at least two conductive contacts. One contact is integrated with a conductive path on the base PCB and another contact pad is positioned to establish a conductive path with a target PCB when the latter is mounted parallel to the base PCB. The resilient conductive strips flex due to a compressive force exerted between the base PCB and target PCB on the stacked layers. The resilient conductive structures are formed by depositing metal to sequentially form each of the stacked layers with one contact being initially formed in engagement with the conductive path on the base PCB.
Abstract:
An electronic device may include: a printed circuit board (PCB); a plurality of electronic components electrically connected to the PCB; and a connection member comprising a first portion fixed to one of the PCB and an electronic component and a second portion magnetically connected to the other one of the PCB and the electronic component. The second portion of the connection member may be moveably connected to the first portion. The connection member may further include a stopper, and may be designed to minimize the repulsive force provided by the connection member when excessive pressure is applied to the electronic device.
Abstract:
A printed wiring board with a component connection pad, such as a solder pad, providing thermal stress compensation for a surface mount circuit component and method for making such a pad. The component connection pad includes opposed groups of multiple conductive fingers that are mutually connected at their far ends and separated at their near ends where they have surfaces for mounting a single surface mount circuit component.
Abstract:
An assembly of a plurality of tiles (1) with a carrier (40). The tiles (1) comprise a foil (20) with an electro-physical transducer (10) and electrical connectors (24, 28) to said transducer. The tiles are mechanically and electrically coupled to the carrier in a connection portion (1c) of said tiles.
Abstract:
A dual-personality extended USB (EUSB) system supports both USB and EUSB devices using an extended 9-pin EUSB socket. Each EUSB device includes a PCBA having four standard USB metal contact pads, and several extended purpose contact springs disposed on an upper side of a PCB. A single-shot molding process is used to form a molded housing over passive components and IC dies disposed on the lower PCB surface. The passive components are mounted using SMT methods, and the IC dies are mounted using COB methods. The extended 9-pin EUSB socket includes standard USB contacts and extended use contacts that communicate with the PCBA through the standard USB metal contacts and the contact springs. The EUSB device is optionally used as a modular insert that is mounted onto a metal or plastic case to provide a EUSB assembly having a plug shell similar to a standard USB male connector.
Abstract:
A method of fixing reflowable elements on electrical contacts. The method includes providing a strip having a number of electrical contacts, each contact including a contact body and a tail portion extending away from the contact body. The tail portions of the contacts are then disposed adjacent an elongate reflowable member. The elongate reflowable member is pushed onto the tail portions of the plurality of contacts. Subsequently, the elongate reflowable member is cut into a plurality of separate reflowable elements, each reflowable element corresponding to one of the tail portions. The electrical contacts with the reflowable element attached thereto are separated from the strip.