Abstract:
An apparatus for controlling overshoots in the switching of LED arrays in a system having a switching voltage converter providing the biasing voltage for the LED array. By synchronizing a switching converter to an LED turn-on signal, loading on the voltage converter can be controlled such that output conduction of the converter only occurs when LEDs that are to be displayed are switched on to provide loading to the output of the converter. A Sample and hold method is employed to effectively store the current information in a previous “on” interval and use it for the current control in a following interval with inhibited current overshoot.
Abstract:
A capacitively coupled fluorescent lamp package having a capacitively coupled fluorescent lamp; an inverter circuit for driving the lamp; and supply nodes for receiving a supply voltage is disclosed. The capacitively coupled fluorescent lamp package includes a resonant circuit lamp driving scheme for driving the capacitively coupled fluorescent lamp. The driving scheme reduces parasitic capacitance leakage current; compensates the reactive power using the secondary side leakage inductance in order to have the resonant frequency approximately equal the inverter circuit operating frequency for current source-type driven circuits; and forms a series resonant sub-circuit with the embedded ballasting capacitor and the secondary side leakage inductance for voltage source-type driven circuits, such that the resonant frequency is substantially less than the inverter circuit operating frequency and that the lamp current is properly shaped along with current ballasting.
Abstract:
An apparatus and method for detecting a short in a load which receives power from a transformer having a primary winding and a secondary winding with the load being connected to the secondary winding. The apparatus has a waveform conversion circuit, a phase detector circuit and a filter. The waveform conversion circuit converts voltage and current signals that represent the voltage and current, respectively, of the primary winding into generally squarewave voltage and current signals, respectively. The phase detector circuit outputs a control signal having a first state when the generally squarewave voltage and current signals are substantially in phase and a second state when there is a difference in phase between the generally squarewave voltage and current signals that is greater than a predetermined phase difference. The filter filters the control signal outputted to the phase detector circuit.
Abstract:
A ballast circuit for a single or multiple lamp parallel operation where at each lamp a condition may be controlled such that the amplitude of a resonant inductor current and an output voltage are almost constant in the steady state. The circuit consists of a half-bridge of a DC storage capacitor, a DC blocking capacitor, power transistors which alternately switch on and off and have a 50% duty ratio, and an LLC resonant converter having a resonant inductor and one or more resonant capacitors. The circuit also includes an output transformer providing galvanic isolation for a double path type power feedback scheme. The output transformer produces magnetizing inductance utilized for power feedback circuit optimization and is connected right after the resonant inductor of the half-bridge circuit.
Abstract:
A switchable power converter includes an input section that receives an AC input voltage and rectifies the AC input voltage and a switchable converter section operative to receive the rectified AC input voltage and convert the rectified AC input voltage to an intermediate DC output voltage. The switchable converter section includes at least one configuration switch operative to switch the switchable converter section between a boost converter topology, for low input line voltages, and either a flyback or SEPIC converter circuit topology, for high input line voltages.
Abstract:
An electronic ballast with a voltage-fed, LC or LLC resonant inverter for multiple gas discharge lamp independent operation which maintains a substantially constant voltage to a lamp or lamps connected to the ballast even during a transition period when a lamp or lamps is ignited, extinguished, added or removed. The ballast includes a feedback loop that maintains a substantially constant phase angle between the voltage and the current in an LC or LLC tank circuit, which has the effect of the ballast providing the substantially constant voltage output. The feedback loop obtains a current feedback signal and a voltage feedback signal from the tank circuit, and provides a phase shifted signal as a feedback correction signal which is the current feedback signal phase shifted by the voltage feedback signal that tracks phase angle changes with one, some or all of the lamps of a set thereof connected to the ballast, and during the transition period. The feedback loop includes a phase-shift circuit which includes at least one differential amplifier stage that receives the current feedback signal at both inputs and the voltage feedback signal at one input so as to phase shift the current feedback signal at that one input. The ballast operates instant start or rapid start gas discharge lamps in various configurations, including dimming configurations.
Abstract:
A matrix structure-based light-emitting diode array includes a plurality of input resistances connected in parallel to one terminal of a current source, and a plurality of output resistances connected in parallel to another terminal of a current source. Light-emitting diodes are then used to connect each of the input resistances to each of the output resistances. Arranged as such, no two light-emitting diodes is connected in parallel and, as such, the failure of any one light-emitting diode does not extinguish any of the other light-emitting diodes.
Abstract:
A lighting system comprising a plurality of light-emitting diodes and a power supply source for driving current through a plurality of parallel disposed, electrically conductive branches, wherein the branches comprise at least one cell. The branches are configured to display the light-emitting diodes according to a three-dimensional arrangement. In each cell, each branch has a light-emitting diode with an anode terminal and a cathode terminal. The anode terminal of each light-emitting diode is coupled to the cathode terminal of a light-emitting diode of an adjacent branch via a shunt. The shunt further comprises a light-emitting diode. In each cell, each light-emitting diode may have a different forward voltage characteristic, while still insuring that all of the light-emitting diodes in the arrangement have the same brightness. Upon failure of one light-emitting diode in a cell, the remaining light-emitting diodes in the same cell are not extinguished and, in a multiple cell embodiment, the light-emitting diodes in the successive cells are not extinguished.
Abstract:
A power converter for providing high frequency current to a load such as a fluorescent lamp. A rectifier circuit provides DC power to a half-bridge inverter whose output is connected to one end of a resonant load circuit. One load connection is at the other end of the load circuit, and is connected to one AC-side terminal of the rectifier circuit to provide current feedback. A voltage feedback capacitor is connected between the other AC-side rectifier circuit terminal and the other load connection. The two feedback paths contribute equivalent components to charging current for a bulk capacitor for the DC power to the inverter. Excellent fluorescent lamp ballast performance is obtained with constant inverter frequency, and with either full bridge or voltage doubler embodiments.
Abstract:
Lamp voltage or current obtained from a self-oscillating converter is stabilized by a feedback circuit. Gates of the switching transistors are connected to output windings of a current transformer whose input current winding is in series with the resonant load lamp circuit. The lamp voltage or current is sensed, and the resulting signal is used to control current through an auxiliary control winding on the current transformer. Preferably, two opposite conductivity type control transistors are connected in parallel across the control winding, and low-pass filtered DC signals corresponding to the lamp voltage or current bias the control transistors.