Abstract:
The invention relates to oligomerization of olefins, such as ethylene, to higher olefins, such as a mixture of 1-hexene and 1-octene, using a catalyst system that comprises a) a source of chromium b) one or more activators and c) a phosphacycle-containing ligating compound. Additionally, the invention relates to a phosphacycle-containing ligating compound and a process for making said compound.
Abstract:
The invention provides a molecular transition metal complex selected from Formula 1, as described herein; an ethylene-based polymer; and a process to form the ethylene-based polymer, said process comprising polymerizing ethylene in the presence of at least one molecular transition metal complex selected from Formula 1, as described herein, and wherein either Z1 or Z2 is dative covalent (coordinate) to the metal (M).
Abstract:
A process for preparing one or more carbazoles comprising (a) contacting one or more compounds represented by formula (1) below with diboron reagents in the presence of PdCl2(dppf) to form one or more 2,2′-dichlorobiaryl represented by formula (2) below; and (b) contacting the one or more 2,2′-dichlorobiaryls with one or more H2N—Y compounds, in the presence of one or more palladium containing catalytic components; thereby forming one or more carbazoles represented by formula (3) below is provided.
Abstract:
The invention relates to oligomerization of olefins, such as ethylene, to higher olefins, such as a mixture of 1-hexene and 1-octene, using a catalyst system that comprises a) a source of chromium b) one or more activators and c) a phosphacycle-containing ligating compound. Additionally, the invention relates to a phosphacycle-containing ligating compound and a process for making said compound.
Abstract:
The instant invention provides a process for the preparation of bis(chloromethyl)dichlorosilane (BCMCS) or bis(chloromethyl) (aryl)chlorosilane (BCMACS) comprising reacting bis(chloromethyl) diphenylsilane and one or more chloride compounds in the presence of a Lewis acid in an inert solvent and under an inert atmosphere.
Abstract:
A metal-ligand complex has formula (I): wherein J, L, M, R1, R2, R3, R4, X, p, q, and r are defined herein. The metal-ligand complex is useful as a catalyst or catalyst precursor for olefin polymerization.
Abstract:
The invention provides an ethylene-based polymer comprising the following properties: a) a ZSVR value from 1.2 to 2.6, b) a MWD from 1.5 to 2.8, and c) a tan delta (0.1 rad/s; 190 C) from 5.0 to 50.
Abstract:
A process to prepare a relatively inexpensive utility fluid comprises contacting together ethylene and a coordination-insertion catalyst and, optionally, an alpha-olefin, in a continuously-fed backmixed reactor zone under conditions such that a mixture of a hyperbranched oligomer and a branched oligomer is formed. The hyperbranched oligomer has an average of at least 1.5 methine carbons per oligomer molecule, and at least 40 methine carbons per one-thousand total carbons, and at least 40 percent of the methine carbons is derived from the ethylene, and the average number of carbons per molecule is from 25 to 100, and at least 25 percent of the hyperbranched oligomer molecules has a vinyl group and can be separated from the branched oligomer, which has an average number of carbons per molecule of up to 20. The coordination-insertion catalyst is characterized as having an ethylene/octene reactivity ratio up to 20 and a kinetic chain length up to 20 monomer units.
Abstract:
The instant invention provides an ethylene based polymer.In one embodiment, the instant invention provides an ethylene based polymer comprising the polymerization reaction product of ethylene with optionally one or more α-olefins in the presence of one or more first catalyst systems and optionally one or more second catalyst systems in a dual reactor system or a multiple reactor system, wherein first catalyst system comprises; (a) one ore more procatalysts comprising a metal-ligand complex of formula (I):
Abstract:
A catalytic system for reductive carbonylation of an alcohol that includes a rhodium complex, an iodide-containing catalyst promoter, and a supporting phosphorus-containing bidentate ligand for the rhodium complex containing at least one aromatic substituent covalently attached to at least one phosphorus of the supporting phosphorus-containing bidentate ligand in an ortho position with an alkoxy substituent or an aryloxy substituent.