Abstract:
A two-dimensional array include N light-emitting arrays each formed of M light-emitting units arranged equally spaced along a direction T tilting from a main scanning direction at an angle α toward a sub-scanning direction. The light-emitting arrays are equally spaced in the sub-scanning direction. A space ds2 between light-emitting arrays with respect to the sub-scanning direction satisfies ds2=ds1×M where ds1 is a positional difference in the sub-scanning direction between light-emitting units which are adjacent each other in the main scanning direction and orthographically-projected on a virtual line extending in the sub-scanning direction. The angle α satisfies α=sin−1((ds2/d1)/M) where d1 is a space between light-emitting units in the light-emitting array with respect to the direction T. The space ds2 is equal to the space d1.
Abstract:
A light source which is a surface emitting laser including a plurality of apertures that correspond to light emitting regions arranged in a two-dimensional array and limit the regions, and a scanning optical system satisfies conditions of Dm·|βm|
Abstract:
An image display apparatus and a vehicle provided with the image display apparatus. The image display apparatus includes a light source unit to emit a laser beam, an optical deflector to deflect the laser beam two-dimensionally, and an intermediate image generator to perform two-dimensional scanning twice in a main scanning direction and a sub-scanning direction with the laser beam deflected by the optical deflector to generate an intermediate image of one frame, where the laser beam deflected by the optical deflector draws two scanning lines. In the image display apparatus, the two scanning lines have two different phases for the two-dimensional scanning for a first time and the two-dimensional scanning for a second time, respectively. In the image display apparatus, the two scanning lines have two different starting points for the two-dimensional scanning for a first time and the two-dimensional scanning for a second time, respectively.
Abstract:
An image display apparatus and a vehicle provided with the image display apparatus. The image display apparatus includes a light source unit to emit a laser beam, an optical deflector to deflect the laser beam two-dimensionally, and an intermediate image generator to perform two-dimensional scanning twice in a main scanning direction and a sub-scanning direction with the laser beam deflected by the optical deflector to generate an intermediate image of one frame, where the laser beam deflected by the optical deflector draws two scanning lines. In the image display apparatus, the two scanning lines have two different phases for the two-dimensional scanning for a first time and the two-dimensional scanning for a second time, respectively. In the image display apparatus, the two scanning lines have two different starting points for the two-dimensional scanning for a first time and the two-dimensional scanning for a second time, respectively.
Abstract:
A scanning unit in an image forming apparatus includes a light source, a coupling lens, an aperture, an image forming lens, and a polygon mirror. The light source includes a plurality of surface-emitting lasers. The coupling lens, the aperture, and the image forming lens are arranged on the optical path of light beams emitted by the light source. The polygon mirror deflects light beams of an image formed by the coupling lens towards a photosensitive drum for scanning. The focal length of the image forming lens in a sub-scanning direction is set to be equal to or smaller than an optical path length between the image forming lens and the aperture.
Abstract:
A light source device includes a light source, a coupling lens, a first opening plate, a second opening plate, a photoreceptor, a package member, a cover glass, a half mirror, and a light source control device. In relation to a main-scanning corresponding direction and a sub-scanning corresponding direction, divergence angles θm and θs of a light beam output from the light source, emission angles θm1 and θs1 of a light beam passing through an opening portion A, and emission angles θm2 and θs2 of a light beam passing through an opening portion B satisfy relationships |(θm1−θm2)/θm|≦0.085 and |(θs1−θs2)/θs|≦0.085.
Abstract:
An optical scanning device includes a first optical system for guiding light beams emitted from a plurality of light emitting units to an optical deflector, and a second optical system for focusing the light beams to optically scan a surface to be scanned. At least one of the first optical system and the second optical system includes a resin lens having a diffractive surface. The diffractive surface includes a diffractive portion and a refractive portion. A power of the diffractive portion and a power of the refractive portion cancel each other.
Abstract:
An optical scanning device includes a lens having a negative optical power at least in a sub-scanning direction and a lens having a positive optical power at least in the sub-scanning direction between a light source and a deflecting unit. The optical scanning device further includes a coupling lens and an adjusting lens whose positions can be adjusted in an optical axis direction and then bonded with ultraviolet curing resin. Therefore, the magnification of an optical system can be adjusted and consequently a desired scan-line interval can be obtained.
Abstract:
A surface-emitting laser array includes a plurality of light emitting parts arranged in a two-dimensional formation having two orthogonal directions. When the plurality of light emitting parts are orthogonally projected on a virtual line parallel to one of the two orthogonal directions, a spacing between two of the plurality of light emitting parts along the virtual line is equal to an integral multiple of a predetermined value. The plurality of light emitting parts include a first light emitting part, a second light emitting part adjacent to the first light emitting part, and a third light emitting part adjacent to the second light emitting part, and a spacing between the first and second light emitting parts differs from a spacing between the second and third light emitting parts.