Abstract:
Cameras may monitor its operation and automatically switch between operation modes thereby to best capture users' experiences. Auxiliary sensor data collected by the one or more sensors and/or captured image data may be analyzed to determine when a camera should switch to a high-motion operation mode. The auxiliary sensor data include motion information of the camera and the content of the captured images include motion information of the captured objects. When a camera or objects captured by the camera are moving rapidly, the camera is switched to operate at the high-motion operation mode to ensure image quality and minimize artifacts to best capture users' experiences. Motion of the camera may be detected or predicted by analyzing the auxiliary sensor data and motion of the captured objects may be detected by analyzing the captured image data thereby to determine whether or not the camera should switch to the high-motion operation mode.
Abstract:
Cameras may monitor its operation and automatically switch between operation modes thereby to best capture users' experiences. Auxiliary sensor data collected by the one or more sensors and/or captured image data may be analyzed to determine when a camera should switch to a high-motion operation mode. The auxiliary sensor data include motion information of the camera and the content of the captured images include motion information of the captured objects. When a camera or objects captured by the camera are moving rapidly, the camera is switched to operate at the high-motion operation mode to ensure image quality and minimize artifacts to best capture users' experiences. Motion of the camera may be detected or predicted by analyzing the auxiliary sensor data and motion of the captured objects may be detected by analyzing the captured image data thereby to determine whether or not the camera should switch to the high-motion operation mode.
Abstract:
Cameras may monitor its operation and automatically switch between operation modes thereby to best capture users' experiences. Auxiliary sensor data collected by the one or more sensors and/or captured image data may be analyzed to determine when a camera should switch to a high-motion operation mode. The auxiliary sensor data include motion information of the camera and the content of the captured images include motion information of the captured objects. When a camera or objects captured by the camera are moving rapidly, the camera is switched to operate at the high-motion operation mode to ensure image quality and minimize artifacts to best capture users' experiences. Motion of the camera may be detected or predicted by analyzing the auxiliary sensor data and motion of the captured objects may be detected by analyzing the captured image data thereby to determine whether or not the camera should switch to the high-motion operation mode.
Abstract:
Video and corresponding metadata is accessed. Events of interest within the video are identified based on the corresponding metadata, and best scenes are identified based on the identified events of interest. A video summary can be generated including one or more of the identified best scenes. The video summary can be generated using a video summary template with slots corresponding to video clips selected from among sets of candidate video clips. Best scenes can also be identified by receiving an indication of an event of interest within video from a user during the capture of the video. Metadata patterns representing activities identified within video clips can be identified within other videos, which can subsequently be associated with the identified activities.