Abstract:
Embodiments of a method for producing powder mixtures having uniform dispersion of ceramic particles within larger superalloy particles are provided, as are embodiments of superalloy powder mixtures. In one embodiment, the method includes producing an initial powder mixture comprising ceramic particles mixed with superalloy mother particles having an average diameter larger than the average diameter of the ceramic particles. The initial powder mixture is formed into a consumable solid body. At least a portion of the consumable solid body is gradually melted, while the consumable solid body is rotated at a rate of speed sufficient to cast-off a uniformly dispersed powder mixture in which the ceramic particles are embedded within the superalloy mother particles.
Abstract:
Embodiments of an electromagnetic coil assembly are provided, as are methods for the manufacture of an electromagnetic coil assembly. In one embodiment, the method for manufacturing an electromagnetic coil assembly includes the steps of providing a braided aluminum lead wire having a first end portion and a second end portion, brazing the first end portion of the braided aluminum lead wire to a first electrically-conductive interconnect member, and winding a magnet wire into an electromagnetic coil. The second end portion of the braided aluminum lead wire is joined to the magnet wire after the step of brazing.
Abstract:
Ionic liquid aluminum electroplating solutions are provided. The ionic liquid aluminum electroplating solution comprises an ionic liquid, an aluminum salt, and an effective amount of propylene carbonate. Methods for producing an aluminum coating on a substrate are also provided. Processes for electroplating aluminum or an aluminum alloy from an ionic liquid aluminum electroplating solution are also provided.
Abstract:
Embodiments of an electromagnetic coil assembly are provided, as are methods for the manufacture of an electromagnetic coil assembly. In one embodiment, the method for manufacturing an electromagnetic coil assembly includes the steps of providing a braided aluminum lead wire having a first end portion and a second end portion, brazing the first end portion of the braided aluminum lead wire to a first electrically-conductive interconnect member, and winding a magnet wire into an electromagnetic coil. The second end portion of the braided aluminum lead wire is joined to the magnet wire after the step of brazing.
Abstract:
A method of making an electromagnetic coil for use in a high-temperature electromagnetic machine includes pre-coating magnet wire with a high-temperature insulation precursor to produce pre-coated magnet wire, winding, while applying in-situ a glass-ceramic slurry, the pre-coated magnet wire into a predetermined coil shape to produce a wet-wound green coil, and thermally processing the wet-wound green coil to produce a processed coil. In some instances, a second layer of a high-temperature insulation may be applied to the processed coil to produce a further insulated processed coil, and then thermally processing the further insulated processed coil to produce a further processed electromagnetic coil.
Abstract:
A method of making an electromagnetic coil for use in a high-temperature electromagnetic machine includes pre-coating magnet wire with a high-temperature insulation precursor to produce pre-coated magnet wire, winding, while applying in-situ a glass-ceramic slurry, the pre-coated magnet wire into a predetermined coil shape to produce a wet-wound green coil, and thermally processing the wet-wound green coil to produce a processed coil. In some instances, a second layer of a high-temperature insulation may be applied to the processed coil to produce a further insulated processed coil, and then thermally processing the further insulated processed coil to produce a further processed electromagnetic coil.
Abstract:
A method of pressure sintering an environmental barrier coating on a surface of a ceramic substrate to form an article is provided. The method includes the steps of etching the surface of the ceramic substrate to texture the surface, disposing an environmental barrier coating on the etched surface of the ceramic substrate. The environmental barrier coating includes a rare earth silicate, and pressure sintering the environmental barrier coating on the etched surface of the ceramic substrate in an inert or nitrogen atmosphere such that at least a portion of the environmental barrier coating is disposed in the texture of the surface of the ceramic substrate thereby forming the article.
Abstract:
An electroplating system includes a tank functioning as an anode, wherein the tank is configured in a horizontal orientation having a length greater than its height, a component part disposed within the tank and functioning as a cathode, an electrical connection, coupled to the anode and cathode, for providing an electric current, and a supply line for delivering an electrolytic fluid to within the tank.
Abstract:
Systems for masking and sealing a component for surface treatment. A system includes a pair of fixture plates disposed on opposite ends of the component from each other. One or more inner sleeves are inserted into the component to mask and seal at least a portion of the component. An outer sleeve extends between the fixture plates to seal outside of the component. A pair of fixture rods extend between the first and second fixture plates and couple the first and second fixture plates together. The system is configured to effect surface treatment of an exposed area of the component, at least a portion of the exposed area defined by and disposed adjacent to the one or more inner sleeves.
Abstract:
A coated turbomachine component includes a ceramic component body having a principal surface. The component includes a high temperature coating. The high temperature coating includes a sintered coating body bonded directly to and intimately contacting the principal surface of the ceramic component body. The sintered coating body has a minimum porosity adjacent the principal surface and a maximum porosity at a location further from the principal surface, as taken along an axis orthogonal to the principal surface.