Abstract:
A conductive paste for screen printing that can be fired at a low temperature of 150° C. or less and enables printing on a plastic substrate, printing on which is impossible at high temperature, is provided. A conductive paste for screen printing includes metal nanoparticles (Y) having an average particle diameter of 1 to 50 nm and protected with an organic compound (X) containing a basic nitrogen atom, metal particles (Z) having an average particle diameter of more than 100 nm and 5 μm, a deprotecting agent (A) for the metal nanoparticles, and an organic solvent (B). An aliphatic monocarboxylic acid having 6 to 10 carbon atoms is used as the deprotecting agent (A) for the metal nanoparticles and a polyalkylene glycol is used as the organic solvent (B).
Abstract:
The present invention provides a light control film that can prevent generation of a moiré pattern when it is superimposed on another member having a regular structure while securing sufficient front luminance, and a backlight device using the same. The light control film of the present invention has a light control layer provided with an uneven pattern on a surface, and in this uneven pattern, a plurality of convexes having circular bases of approximately the same diameters are arranged so that the bases thereof should not overlap with one another and each should touch one or two or more other bases, and ratio of convexes arranged so that each of circular bases thereof should touch both bases of two convexes of which bases touch each other is controlled to be 50 to 92% among the total convexes arranged. The backlight device of the present invention is a backlight device incorporated with the aforementioned light control film.
Abstract:
A transmission screen through which an observer can see the side of the screen opposite to the observer side, and which has a sufficient viewing angle is provided. The transmission screen is a transmission screen 1 having a light diffusing layer 2 comprising a transparent binder and light diffusing elements contained in the binder, and the transmission screen is constituted so that the light diffusing elements should have a relative refractive index n of 0.75 or smaller or 1.25 or larger relative to refractive index of the transparent binder, both surfaces of the transmission screen 1 should be substantially smooth, and the transmission screen should have a total haze (JIS K7136:2000) of 10 to 85%.
Abstract:
A method for manufacturing a thin functional member having no base material, which exhibits a special function and is free from curling caused by the base material. The method includes the following steps (1) to (4): (1) filling a functional layer comprising an ionizing radiation curable resin between a base material and a mold having a predetermined concavo-convex pattern, (2) irradiating the filled functional layer with ionizing radiation to half-cure the functional layer, and then delaminating the functional layer and the base material from the mold, (3) adhering an adhesive sheet to a part of the functional layer, and delaminating the functional layer from the base material starting from a portion to which the adhesive sheet is adhered, and (4) irradiating the functional layer with ionizing radiation again to further cure the functional layer.
Abstract:
A method for producing surface convexes and concaves enabling easy and highly precise formation of desired convex and concave shapes using a photomask is provided.A mask member having light transmitting sections and non-light transmitting sections is disposed over one side of a photosensitive film consisting of a photosensitive resin composition with an interval with respect to the photosensitive film, light is irradiated from a light source disposed on the side of the mask member to subject the photosensitive film to light exposure through the light transmitting sections of the mask member, and exposed portions or unexposed portions of the photosensitive film are removed by development to produce convexes and concaves on the photosensitive film in shapes determined by shapes of the exposed portions or unexposed portions. In the light exposure, light exposure conditions such as distance L between the light source and the mask member, size D of the light source and optical distance T between the mask member and the photosensitive film are controlled so as to control the shapes of the exposed portions or unexposed portions.
Abstract:
A method for producing surface convexes and concaves enabling easy and highly precise formation of desired convex and concave shapes using a photomask is provided. A mask member 20 having light transmitting sections and non-light transmitting sections is disposed over one side of a photosensitive film 10 consisting of a photosensitive resin composition with a light diffusing layer 30 disposed between the mask member 20 and the photosensitive film 10. Light is irradiated from a light source disposed on the side of the mask member 20 to expose the photosensitive film 10 through the light transmitting sections of the mask member 20, and exposed portions or unexposed portions of the photosensitive film 10 are removed by development to produce convexes and concaves on the photosensitive film 10 in shapes determined by shapes of the exposed portions or unexposed portions. In the light exposure, light exposure conditions such as haze of the light diffusing layer 30 are controlled so as to control the shapes of the exposed portions or unexposed portions.
Abstract:
The light control film provides improved front luminance and appropriate diffusion without the problems of interference pattern, glare. The light control film has a rough surface that, for substantially any arbitrary cross section perpendicular to a base plane of the film, has an average θave of absolute values of slope, with respect to the base plane of a curve along the edge of the cross section, which is not less than 20 degrees and not more than 75 degrees, and has an absolute value of skewness (JIS B0601:2001) of the profile curve of not more than 1.2.
Abstract:
A light control film enabling improvement in front luminance, having appropriate light diffusing property and free from problems of interference pattern, glare etc. is provided. A light control film 10 having a rough surface as one surface and a substantially smooth surface as the other surface is constituted so that total light transmission of the film for lights entered from the smooth surface should be not more than 65%, total light transmission of the film for lights entered from the rough surface should be not less than 80%, as measured according to the measurement method defined in JIS K7361-1:1997, and a value obtained by subtracting the total light transmission for smooth surface incidence from the total light transmission for rough surface incidence should be not less than 30%.
Abstract:
Disclosed is a front scattering film 5 which comprises a light scattering layer consisting of transparent polymer binder containing spherical microparticles 1, a transparent resin film 2 and an adhesive layer 3, wherein the spherical microparticles have a mean particle diameter of 1.0 &mgr;m to 10.0 &mgr;m, and a refractive index (n) relative to refractive index of the transparent polymer binder satisfying a condition of 0.91
Abstract:
An insulating ink composition for forming an insulating film, which sufficiently achieves a low calcination temperature, solvent resistance and an insulating property, is provided. Furthermore, an ink composition for forming an insulating film which can form, by the printing method, fine insulating film patterns necessary for formation of highly integrated organic transistors is provided. The present invention provides an ink composition which forms an insulating film, and includes an organic solvent, a polyvinylphenol-based resin, an epoxy resin and a cross-linking aid. Particularly, the ink composition is a composition wherein the organic solvent includes an organic solvent which has a vapor pressure of 11.3×102 Pa or higher at 20° C. and a boiling point of lower than 115° C. under atmospheric pressure and an organic solvent which has a vapor pressure of less than 11.3×102 Pa at 20° C. and a boiling point of 115° C. or higher under atmospheric pressure; the ink composition includes a extender component having a volume average particle diameter of 1 to 150 nm and a silicone-based releasing component.