Abstract:
The semiconductor substrate includes a high-ohmic semiconductor material with a conduction band edge and a valence band edge, separated by a bandgap, wherein the semiconductor material includes acceptor or donor impurity atoms or crystal defects, whose energy levels are located at least 120 meV from the conduction band edge, as well as from the valence band edge in the bandgap; and wherein the concentration of the impurity atoms or crystal defects is larger than 1×1012 cm−3.
Abstract translation:半导体衬底包括具有导带边缘和价带边缘的高电阻半导体材料,带隙由带隙分开,其中半导体材料包括受体或施主杂质原子或晶体缺陷,其能级位于至少120meV 导带边缘,以及带隙中的价带边缘; 并且其中杂质原子或晶体缺陷的浓度大于1×10 12 cm -3。
Abstract:
A power semiconductor device includes a wiring structure adjoining at least one side of a semiconductor body and comprising at least one electrically conductive compound. The power semiconductor device further includes a cooling material in the wiring structure. The cooling material is characterized by a change in structure by means of absorption of energy at a temperature TC ranging between 150° C. and 400° C.
Abstract:
A notch filter includes an inductor coupled between an input node and an output node, and a dual-resonator structure coupled between the input node, the output node, and ground.
Abstract:
In accordance with an embodiment, a method of operating an RF system includes filtering a first wideband RF signal using a wideband filter bank. Filtering the first RF signal includes separating the first wideband RF signal into frequency cluster signals, where each frequency cluster signal of the frequency cluster signals includes different frequency ranges, the first wideband RF signal includes multiple RF bands, and each of the different frequency ranges comprises a plurality of RF bands of the multiple RF bands. The method further includes band stop filtering at least one of the frequency cluster signals to produce a band stopped frequency cluster signal.
Abstract:
A bandpass filter includes a capacitor coupled between an input node and an output node, and a dual-resonator structure coupled between the input node, the output node, and ground.
Abstract:
A semiconductor device includes a transistor having a plurality of transistor cells in a semiconductor body. Each transistor cell includes a control terminal and first and second load terminals. The transistor further includes a phase change material exhibiting a solid-solid phase change at a phase transition temperature Tc between 150° C. and 400° C. The control terminals of the plurality of transistor cells are electrically connected to one another.
Abstract:
A resonator element for use in a filter is provided. The resonator element includes a first resonator acoustically coupled to a second resonator. The first resonator has terminals for incorporation in a filter structure. A tuning circuit is coupled to the second resonator to enable tuning of the resonator element.
Abstract:
A power semiconductor device includes a wiring structure adjoining at least one side of a semiconductor body and comprising at least one electrically conductive compound. The power semiconductor device further includes a cooling material in the wiring structure. The cooling material is characterized by a change in structure by means of absorption of energy at a temperature TC ranging between 150° C. and 400° C.
Abstract:
A method of processing a plurality of packaged electronic chips being connected to one another in a common substrate is provided, wherein the method comprises etching the electronic chips, detecting information indicative of an at least partial removal of an indicator structure following an exposure of the indicator structure embedded within at least a part of the electronic chips and being exposed after the etching has removed chip material above the indicator structure, and adjusting the processing upon detecting the information indicative of the at least partial removal of the indicator structure.
Abstract:
In one embodiment, a method of forming a semiconductor device includes forming a metal line over a substrate and depositing an alloying material layer over a top surface of the metal line. The method further includes forming a protective layer by combining the alloying material layer with the metal line.