Abstract:
Particular embodiments described herein provide for a wearable electronic device, such as a bracelet, watch, wristband or armband that includes a circuit board coupled to a plurality of electronic components (which may include any type of components, elements, circuitry, etc.). One particular example implementation of a wearable electronic device may include a strap portion and a first display portion included in the strap portion. The first display portion can include a main display and a first fingerprint sensor configured to capture one or more fingerprints placed on the main display at one or more capture locations. The captured fingerprints can be used to identify a user and log-in the user to the device if the user is authorized to log-in to the device. A fingerprint can also be captured for a finger placed on a secondary display that may be contained in a latch portion of the device.
Abstract:
Particular embodiments described herein provide for an electronic system that includes a docking station configured to wirelessly couple to an electronic device and a wireless charging element removably coupled to the docking station. The wireless charging element includes a power receiving unit and is configured to wireless charge the electronic device. In an example, the docking station is configured for high speed input/output.
Abstract:
Particular embodiments described herein provide for an electronic device, such as a notebook computer or laptop, that includes a circuit board coupled to a plurality of electronic components (which includes any type of components, elements, circuitry, etc.). One particular example of the electronic device includes a hinge design that includes a first housing pinion that connects to a first housing, a first housing rack coupled to the first housing pinion, a second housing pinion that connects to a second housing, and a second housing rack coupled to the second housing pinion. The first housing rack can be curved and a portion of the first housing pinion can travel along a pinion guide that has approximately the same curved profile as the first housing rack.
Abstract:
In one example a hinge assembly for an electronic device comprises a first hinge comprising a first bracket coupled to a first bushing disposed at a first end of the first bracket and rotatable about a first shaft extending through the first bushing. a second hinge comprising, a second bushing, a first linkage arm rotatable about a second shaft extending through the second bushing, and a second linkage arm rotatable about the second shaft extending through the second bushing and a third hinge comprising a second bracket coupled to a second bushing disposed at a first end of the second bracket and rotatable about a third shaft extending though the second bushing, wherein the first linkage arm is rotatably coupled to the first shaft and the second linkage arm is rotatably coupled to the third shaft. Other examples may be described.
Abstract:
Particular embodiments described herein provide for a wearable electronic device, such as a bracelet, coupled to a plurality of electronic components (which may include any type of components, elements, circuitry, etc.). One particular implementation of a wearable electronic device may include a bracelet portion, and at least one charm device configured to be affixed to the bracelet portion. The at least one charm device includes logic configured to receive a first interaction input, and send a first message including a first information indicative of the first interaction input and a first identifier associated with the at least one charm device to a second wearable electronic device. The first identifier is further associated at least a portion of the second wearable electronic device.
Abstract:
The present techniques are related a dock with a cooling solution. The performance dock includes a thermoelectric device, an alignment mechanism, and an air mover. The alignment mechanism is to align the computing device when docking the computing device, and the thermoelectric device is to cool the computing device when docked, and the air mover is to enable an airflow through the dock to cool the thermoelectric device when the computing device is docked.
Abstract:
A system and method for implementing integrated and adjustable image projection with auto-image correction in electronic devices using an in-facing or world-facing image projector are disclosed. A particular embodiment includes an electronic device including: a lid; a base including a hinge coupling the lid with the base; and an image projection subsystem including an image projector installed in the lid, the image projector being configured to produce a projected image that is projected onto a projection surface, the angle of the projection being adjustable by adjusting the angle of the lid relative to the base.