Abstract:
In accordance with an embodiment of the present invention, a process tool includes a chuck configured to hold a substrate. The chuck is disposed in a chamber. The process tool further includes a shielding unit with a central opening. The shielding unit is disposed in the chamber over the chuck.
Abstract:
In one embodiment, the semiconductor die includes a selective epitaxial layer including device regions, and a masking structure disposed around sidewalls of the epitaxial layer. The masking structure is part of an exposed surface of the semiconductor die.
Abstract:
A method includes a step of performing a time multiplexed etching process, wherein the last etching step of the time multiplexed etching process is of a first time duration. After performing the time multiplexed etching process, an etching step having a second time duration is performed, wherein the second time duration is greater than the first time duration.
Abstract:
Various methods and apparatuses are provided relating to separation of a substrate into a plurality of parts. For example, first a partial separation is performed and then the partially separated substrate is completely separated into a plurality of parts.
Abstract:
A method for separating semiconductor die includes forming a porous region on a semiconductor wafer and separating the die at the porous region using mechanical or other means.
Abstract:
The semiconductor processing system includes a reactor chamber that has an upper wall and a lower wall. A hold member is disposed in the reactor chamber to hold a semiconductor substrate in such a way that it faces the lower wall of the reactor chamber.
Abstract:
An integrated circuit substrate and a method for manufacturing the same are disclosed. In an embodiment a method includes providing a wafer having a plurality of active areas, each active area being provided in a separate die area and for each active area, providing a code pattern outside the active area, the code pattern being associated with the die area.
Abstract:
A chuck, a system including a chuck and a method for making a semiconductor device are disclosed. In one embodiment the chuck includes a first conductive region configured to be capacitively coupled to a first RF power generator, a second conductive region configured to be capacitively coupled to a second RF power generator and an insulation region that electrically insulates the first conductive region from the second conductive region.
Abstract:
The description discloses a method for use in manufacturing integrated circuit chips. The method comprises providing a wafer having a plurality of integrated circuits each provided in an separate active areas, and, for each active area, outside the active area, providing a code pattern that is associated with the integrated circuit. A computer-readable medium is also disclosed. Further, a manufacturing apparatus configured to receive a wafer and to remove material from the wafer so as to provide a scribe line to the wafer formed as a trench for use in separation of the wafer into dies is also disclosed. The description also discloses a wafer, an integrated circuit chip die substrate originating from a wafer of origin and carrying an integrated circuit, and an integrated circuit chip.
Abstract:
A method for fabricating a semiconductor device includes forming an opening in a first epitaxial lateral overgrowth region to expose a surface of the semiconductor substrate within the opening. The method further includes forming an insulation region at the exposed surface of the semiconductor substrate within the opening and filling the opening with a second semiconductor material to form a second epitaxial lateral overgrowth region using a lateral epitaxial growth process.