Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of Multi-User (MU) ranging measurement. For example, an apparatus may include circuitry and logic configured to cause a wireless station to generate a plurality of sounding sequences corresponding to a plurality of stations (STAs), the plurality of sounding sequences including at least first and second different sounding sequences, the first sounding sequence corresponding to at least one first STA of the plurality of STAs, the second sounding sequence corresponding to at least one second STA of the plurality of STAs; during a Multi-User (MU) ranging measurement, to transmit a MU frame to indicate a MU Downlink (DL) transmission; and, following the MU frame, to transmit a MU DL Null Data Packet (NDP) transmission to the plurality of STAs, the MU DL NDP transmission including a plurality of Long Training Fields (LTFs) including the plurality of sounding sequences.
Abstract:
Computer readable media, methods, and apparatuses for location estimation using multi-user multiple-input multiple-output in a wireless local-area network are disclosed. An apparatus is disclosed comprising processing circuitry configure to: encode a fine timing measurement (FTM) initiate (FTI) frame, the FTI frame comprising M0 message uplink resource allocations for a plurality of responders to transmit M0 messages to the HE STA. The processing circuitry further configured to configure the HE STA to transmit the FTI frame to the plurality of responders, and decode M0 messages from the plurality of responders in accordance with the M0 message uplink resource allocations, where the M0 messages are to be received at the HE STA at times T2 in accordance with multi-user multiple-input multiple-output (MU-MIMO). The processing circuitry further configured to acknowledge the M0 messages to be transmitted at a time T3, and decode M1 messages comprising a corresponding time T1 and time T4.
Abstract:
Logic to generate an extremely high throughput (EHT) physical layer protocol data unit (PPDU) comprising a medium access control (MAC) management frame. the MAC management frame comprising a QoS management field. the QoS management field comprising at least one bit value to indicate quality of service (QoS) management capability associated with links associated with more than one frequency bands. Logic to cause the transmission of the EHT PPDU. And logic to receive and decode the EHT PPDU.
Abstract:
An apparatus of a wireless communications device to transmit a sounding announcement frame (SAF) for use in a round-trip estimation to a receiving station, and associated method are provided. The apparatus is configured to encode an encoded field of the SAF that is one of a frame control field (FCF) or a sounding dialog token field (SDTF) of a null data packet announcement (NDPA) packet that forms the SAF to indicate to the receiving station that a communication different from a trigger frame may follow. The apparatus is also configured to configure the wireless device to transmit the NDPA packet to one or more stations.
Abstract:
This disclosure describes systems, methods, and devices related to efficient poll response frame in wireless communications. A device may cause to send a multiuser location trigger frame of subtype poll to one or more initiating station devices (ISTAs) in a multi-user trigger-based range measurement during a polling phase. The device may identify a first clear to send (CTS) frame received from a first ISTA of the one or more ISTAs during the polling phase. The device may identify a second CTS frame received from a second ISTA of the one or more ISTAs during the polling phase. The device may determine the identity of a first ISTA based on information comprised in the first CTS frame received from the first ISTA. The device may determine the identity of the second ISTA based on information comprised in the second CTS frame received from the second ISTA.
Abstract:
Methods, apparatuses, and computer readable media for report identification and power control for ranging in a wireless network are disclosed. An apparatus of a responding station (RSTA) is disclosed, where the apparatus comprises processing circuitry configured to perform ranging with a initiating stations (ISTAs) and maintain a separate sounding dialogue token for each of the ISTAs and transmit a corresponding sounding dialogue token for a ISTA in a trigger frame for ranging and sounding or a null data packet announcement (NDPA) frame, and in a responding to initiating location measurement report. Apparatuses of RSTAs and ISTAS are disclosed that perform power control management during non-trigger-based ranging.
Abstract:
Computing readable media, apparatuses, and methods for signaling UL frame duration in wireless local-area networks. An apparatus of a wireless device is disclosed. The apparatus comprising processing circuitry, the processing circuitry configured to: encode a trigger frame for an uplink (UL) multi-user (MU) communication, the trigger frame including a media access control (MAC) portion including one or more station identifications and a length field to indicate an UL physical layer convergence procedure (PLCP) protocol data unit (PPDU) (UL-PPDU) length, the MAC portion further including a duration field to indicate a time period for other stations to set network allocation vectors. The processing circuitry further configured to: configure the access point to transmit the trigger frame, and decode UL-PPDUs from one or more stations identified by the one or more stations identifications, where a length of each of the UL-PPDUs is to be in accordance with the UL-PPDU length.
Abstract:
System and techniques for a multi-class Long Range Lower Power (LRLP) access point (AP) multifactor intelligent agent control are described herein. A station (STA) association at the AP is received. Here, the association includes Class Identifier (ID) information. The Class ID information encompasses a set of communication parameters. A schedule of LRLP and non-LRLP STAs with associations at the AP is maintained. A transceiver chain is modified based on the schedule and the set of communication parameters to complete a communication with the STA.
Abstract:
Computing readable media, apparatuses, and methods for signaling UL frame duration in wireless local-area networks. An apparatus of a wireless device is disclosed. The apparatus comprising processing circuitry, the processing circuitry configured to: encode a trigger frame for an uplink (UL) multi-user (MU) communication, the trigger frame including a media access control (MAC) portion including one or more station identifications and a length field to indicate an UL physical layer convergence procedure (PLCP) protocol data unit (PPDU) (UL-PPDU) length, the MAC portion further including a duration field to indicate a time period for other stations to set network allocation vectors. The processing circuitry further configured to: configure the access point to transmit the trigger frame, and decode UL-PPDUs from one or more stations identified by the one or more stations identifications, where a length of each of the UL-PPDUs is to be in accordance with the UL-PPDU length.
Abstract:
Signaling techniques to support DL MU-MIMO in 60 GHz wireless networks are described. According to various such techniques, a transmitting 60 GHz-capable device may be configured to include DL MU-MIMO control information in a PHY header of a PPDU that comprises respective data for multiple receiving devices. In some embodiments, the DL MU-MIMO control information may include information identifying each such receiving device. In various embodiments, the DL MU-MIMO control information may include information specifying—for each such receiving device—one or more respective spatial streams that are assigned to that receiving device. Other embodiments are described and claimed.