Abstract:
A container includes a first wall and an opposing second wall that extend between a first end and an opposing second end, a first fluid flow path being bounded between the first wall and the second wall. An inlet is formed at the first end and communicates with the first fluid flow path. An outlet is formed at the second end and communicates with the first fluid flow path. The first wall includes a primary wall portion having a first opening extending therethrough in alignment with the first fluid flow path. A secondary wall portion extends over the first opening and is secured to the primary wall portion so as to seal the first opening closed, the secondary wall portion being comprised of a film having a thickness that is less than a thickness of the primary wall portion.
Abstract:
A container assembly includes a flexible bag having an interior surface bounding a chamber and an opposing exterior surface, the bag having a bottom end wall being comprised of a first sheet overlying a second sheet, the first sheet and the second sheet of the bottom end wall being welded together so as to form a first sparging area and a separated second sparging area that are both bounded between the first sheet and the second sheet, at least a portion of the first sheet overlying the first and second sparging areas being gas permeable.
Abstract:
A bag assembly for use with a heat exchanger includes a flexible bag having of one or more sheets of polymeric material, the bag having a first end that bounds a first compartment and an opposing second end that bounds a second compartment, a support structure being disposed between the first compartment and the second compartment so that the first compartment is separated and isolated from the second compartment. A first inlet port, a first outlet port, and a first drain port are coupled with the flexible bag so as to communicate with the first compartment. A second inlet port, a second outlet port, and a second drain port are coupled with the flexible bag so as to communicate with the second compartment.
Abstract:
A method and system for achieving a gas-liquid mass transfer includes delivering into a compartment of a container a liquid, the liquid having an exposed top surface disposed within the compartment. A stream of a gas is passed over the top surface of the liquid so that the stream of gas produces turbulence on the top surface that is sufficient to achieve the gas-liquid mass transfer. In one embodiment the liquid is a culture that includes cells or microorganisms and the mass transfer functions to oxygenate the culture sufficient to sustain the cells or microorganisms.
Abstract:
A method and system for achieving a gas-liquid mass transfer includes delivering into a compartment of a container a liquid, the liquid having an exposed top surface disposed within the compartment. A stream of a gas is passed over the top surface of the liquid so that the stream of gas produces turbulence on the top surface that is sufficient to achieve the gas-liquid mass transfer. In one embodiment the liquid is a culture that includes cells or microorganisms and the mass transfer functions to oxygenate the culture sufficient to sustain the cells or microorganisms.
Abstract:
A liquid mixing system includes a support housing at least partially bounding a compartment. A mount is secured to the support housing. A drive motor assembly is configured to engage a drive shaft for moving the drive shaft within the compartment of the support housing. A four bar linkage system extends between the mount and the drive motor assembly, the four bar linkage system being movable between a first position wherein the drive motor assembly is disposed at a first elevation and a second position wherein the drive motor assembly is disposed at a second elevation that is different from the first elevation.
Abstract:
A method for filtering a gas comprises passing a gas through a compartment of a filter assembly, the filter assembly comprising: an inlet opening; a first outlet opening; a casing comprising polymeric film and bounding the compartment, the compartment communicating with the inlet opening and the first outlet opening; and a first filter at least partially disposed within the compartment. The method further comprising forming a first seal across a first section of the casing at a location between the inlet opening and the first filter to form a first sub-compartment within the casing and severing the casing at a first location.
Abstract:
A mixing system for mixing a liquid includes a first impeller segment having a first mount and a first mixing blade secured to the first mount and a second impeller segment having a second mount and a first mixing blade secured to the second mount, the second impeller segment being separate and discrete from the first impeller segment. One or more drive members are secured to the first impeller segment and the second impeller segment for concurrently rotating the first impeller segment and the second impeller segment about a rotational axis. The first impeller segment and the second impeller segment are secured to the one or more drive members so that a plane extending normal to the axis of rotation intersects with the first mixing blade of the first impeller segment and the first mixing blade of the second impeller segment.
Abstract:
A method for mixing a fluid includes: dispensing a first volume of a fluid into a flexible container, the flexible container being at least partially disposed within the chamber of a support housing; repeatedly moving the support housing and the flexible container contained therein so as to mix the first volume of fluid within the flexible container; adding further fluid into the flexible container after moving the support housing to form a second volume of fluid; and manipulating a mixing element within the flexible container so as to mix the second volume of fluid.
Abstract:
A method for filtering a gas includes passing a gas into a compartment of a casing that includes a polymeric film, the casing having: a first sleeve having a first outlet opening, a first filter being at least partially disposed within the first sleeve so that gas passing through the first sleeve must pass through the first filter; and a second sleeve having an second outlet opening, a second filter being at least partially disposed within the second sleeve so that gas passing through the second sleeve must pass through the second filter, the second sleeve being closed so that the gas passing into the compartment of the casing passes through the first sleeve and the first filter and directly contacts at least a portion of the first sleeve comprised of the polymeric film but does not pass through the second sleeve. Opening the second sleeve when a predetermined condition is met so that the gas passes through the second sleeve and the second filter.