Abstract:
A WiFi device, which utilizes full spectrum capture, captures signals over a wide spectrum including one or more WiFi frequency bands and extracts one or more WiFi channels from the captured signals. The AP analyzes the extracted WiFi channels and aggregates a plurality of blocks of WiFi channels to create one or more aggregated WiFi channels based on the analysis. The WiFi frequency bands comprise 2.4 GHz and 5 GHz WiFi frequency bands. The AP determines one or more characteristics of the extracted WiFi channels based on the analysis. The determined characteristics comprise noise, interference, fading and blocker information. The AP generates a channel map comprising at least the extracted one or more WiFi channels based on the determined characteristics. The AP dynamically and/or adaptively senses the extracted one or more WiFi channels and updates the determined characteristics of the extracted WiFi channels.
Abstract:
A low density parity check (LDPC) decoder integrated on a single semiconductor substrate may comprise one or more arrays of first-type memory cells and one or more arrays of second-type memory cells. The LDPC decoder may be configured to store intrinsic messages in the array of first-type cells and to store extrinsic messages in the array of second-type cells. The first-type cells may be a first one of: static random access memory (SRAM) cells, refreshed dynamic random access memory (DRAM) cells, non-refreshed DRAM cells configured as a FIFO, and non-refreshed DRAM cells not configured as a FIFO. The second-type cells may be a second one of: static random access memory (SRAM) cells, refreshed dynamic random access memory (DRAM) cells, non-refreshed DRAM cells configured as a FIFO, and non-refreshed DRAM cells not configured as a FIFO.
Abstract:
A single receiver is operable to utilize full spectrum capture to capture signals over a wide spectrum comprising a plurality of WiFi frequency bands, extract one or more WiFi channels from said captured signals and aggregate a plurality of blocks of said WiFi channels to create one or more aggregated WiFi channels. The WiFi frequency bands include 2.4 GHz and 5 GHz WiFi frequency bands. A plurality of blocks of the WiFi channels may be aggregated from contiguous blocks of spectrum and/or non-contiguous blocks of spectrum in one or more of said plurality of WiFi frequency bands. One or more non-WiFi channels may be filtered out from the captured signals. One or more aggregated WiFi channels may be assigned to one or more WiFi enabled communication devices. At least a portion of the one or more aggregated WiFi channels may be dynamically assigned to one or more other WiFi enabled communication devices.
Abstract:
Methods and systems are provided for power control in communications devices. Bonding of channels in communication devices may be dynamically adjusted, such as responsive to requests for bandwidth adjustment. For example, bonded channel configurations may be adjusted based on power, such as to single channel configurations (or to channel configurations with small number of channels, such as relative to current configurations) for low power operations. Components (or functions thereof) used in conjunction with receiving and/or processing bonded channels may be dynamically adjusted. Such dynamic adjustments may be performed, for example, such as to maintain required synchronization and system information to facilitate rapid data transfer resumption upon demand.
Abstract:
A method and apparatus for memory power and/or area reduction. An array of memory cells may be scanned to detect faulty memory cells, if any, in the array. A supply voltage Vmem applied to the array of memory cells may be controlled based on a result of the scan, and based on a sensitivity coefficient of one, or more, of the array of memory cells. The sensitivity coefficient may indicate an impact that the one, or more, of the array of memory cells being faulty may have on the performance of a device that reads and writes data to the memory array. Additionally or alternatively, the physical dimensions of the memory cells may be determined based on the sensitivity coefficient(s) and/or based on a number of faulty memory cells that can be tolerated in the array of memory cells.
Abstract:
A CMTS may receive a request that a network device be permitted to enter a power-saving mode of operation. In response, the CMTS may enter a power-saving mode of operation wherein MAC management messages, transmission opportunities for the sleeping network device, and/or contention periods on one or more channels occur at independently determinable intervals. The CMTS may then transmit a message granting the network device permission to enter the power-saving mode of operation. The CMTS may start a sleep timer upon transmitting the MAC management message and may deregister the network device if no communication is received from the network device prior to expiration of the sleep timer. The CMTs may buffer traffic destined for the network device in a buffer of the CMTS while the network device is in the power-saving mode of operation, and may wake the network device upon the amount of buffered traffic reaching a threshold.
Abstract:
Methods and systems for optimizing bandwidth utilization in an in-home network may comprise in a multi-protocol premises-based wired and wireless network, monitoring capabilities of media of a wired communication link operating in accordance with a wired communication standard and capabilities of a wireless communication link operating in accordance with a wireless local area network standard. Some or all data communications from the wired communication link may be routed to the wireless communication link based on the media capabilities. Bit-loading of the data communications in the wired communication link and wireless communication link may be configured based on the media capabilities. The capabilities may comprise one or more of: bandwidth, data throughput, usage, and signal-to-noise ratio. The wired communication standard may comprise Multimedia over Cable Alliance (MoCA). The monitoring may be performed by one or more Multimedia over Cable Alliance (MoCA) network controllers.
Abstract:
A low density parity check (LDPC) decoder integrated on a single semiconductor substrate may comprise one or more arrays of first-type memory cells and one or more arrays of second-type memory cells. The LDPC decoder may be configured to store intrinsic messages in the array of first-type cells and to store extrinsic messages in the array of second-type cells. The first-type cells may be a first one of: static random access memory (SRAM) cells, refreshed dynamic random access memory (DRAM) cells, non-refreshed DRAM cells configured as a FIFO, and non-refreshed DRAM cells not configured as a FIFO. The second-type cells may be a second one of: static random access memory (SRAM) cells, refreshed dynamic random access memory (DRAM) cells, non-refreshed DRAM cells configured as a FIFO, and non-refreshed DRAM cells not configured as a FIFO.
Abstract:
A network device may comprise one or more circuits including a clock signal generator, an ADC, and a processor. The ADC may digitize a received signal across a range of frequencies that encompasses a first band of frequencies used for a first network and a second band of frequencies used for a second network. A sampling frequency of the ADC may be determined by a frequency of a clock signal output by the clock signal generator. The processor may determine whether the first network is active and whether the second network is active. The processor may configure the clock generator such that, when both of the first network and the second network are active, the clock signal is set to a first frequency, and when the first network is active and the second network is inactive, the clock signal is set to a second frequency.
Abstract:
A WiFi access point (AP) includes a receive radio frequency (RF) front end and a baseband processor that controls operation of the receive RF front end. The RF front end captures signals over a wide spectrum that includes a plurality of WiFi frequency bands (2.4 GHz and 5 GHz) and channelizes one or more WiFi channels from the captured signals. The baseband processor combines a plurality of blocks of WiFi channels to create one or more aggregated WiFi channels. The receive RF front end may be integrated on a first integrated circuit and the baseband processor may be integrated on a second integrated circuit. The first and second integrated circuits may be integrated on a single package. The RF front end and the baseband processor may be integrated on a single integrated circuit. The WiFi access point comprises a routing module that is communicatively coupled to the baseband processor.