Abstract:
A method of encoding data for transmissions from a source to a destination over a communications channel is provided. The method operates on an ordered set of source symbols and may generate zero or more redundant symbols from the source symbols, wherein data is encoded in a first step according to a simple FEC code and in a second step, data is encoded according to a second FEC code, more complex than the first FEC code. The first FEC code and/or the second FEC code might comprise coding known in the art. These steps result in two groups of encoded data in such a way that a low-complexity receiver may make use of one of the groups of encoded data while higher complexity receivers may make use of both groups of encoded data.
Abstract:
Multiple files a served using a server coupled to a data network. A plurality of files is determined, wherein a file includes an integer number of blocks, and wherein each block includes at least one input symbol. For each file, an indication of at least one channel on which to serve the file is determined, and, for each file, a rate at which to serve the file is determined. Also, a schedule for processing the blocks is determined, and output symbols for the blocks are generated according to the schedule. The output symbols are transmitted on the corresponding at least one channel, wherein the files are concurrently served at their corresponding rates.
Abstract:
Efficient methods for encoding and decoding Half-Weight codes are disclosed and similar high density codes are disclosed. The efficient methods require at most 3·(k−1)+h/2+1 XORs of symbols to calculate h Half-Weight symbols from k source symbols, where h is of the order of log(k).
Abstract translation:有效的编码和解码方法公开半重码,并公开类似的高密度码。 有效方法需要至多3(k-1)+ h / 2 + 1个符号XOR来计算h个k个符号的半重符号,其中h是log(k)的数量级。
Abstract:
A method of encoding data for transmission from a source to a destination over a communications channel is provided. The method operates on an ordered set of input symbols and includes generating a plurality of redundant symbols from the input symbols. The method also includes generating a plurality of output symbols from a combined set of symbols including the input symbols and the redundant symbols, wherein the number of possible output symbols is much larger than the number of symbols in the combined set of symbols, wherein at least one output symbol is generated from more than one symbol in the combined set of symbols and from less than all of the symbols in the combined set of symbols, and such that the ordered set of input symbols can be regenerated to a desired degree of accuracy from any predetermined number of the output symbols. The plurality of redundant symbols is generated from an ordered set of input symbols to be transmitted in a deterministic process such that a first set of static symbols calculated using a first input symbol has a low common membership with a second set of static symbols calculated using a second input symbol distinct from the first input symbol.