Abstract:
Some embodiments include a fuse having a tungsten-containing structure directly contacting an electrically conductive structure. The electrically conductive structure may be a titanium-containing structure. An interface between the tungsten-containing structure and the electrically conductive structure is configured to rupture when current through the interface exceeds a predetermined level. Some embodiments include a method of forming and using a fuse. The fuse is formed to have a tungsten-containing structure directly contacting an electrically conductive structure. An interface between the tungsten-containing structure and the electrically conductive structure is configured to rupture when current through the interface exceeds a predetermined level. Current exceeding the predetermined level is passed through the interface to rupture the interface.
Abstract:
Some embodiments include methods of forming memory cells. Heater structures are formed over an array of electrical nodes, and phase change material is formed across the heater structures. The phase change material is patterned into a plurality of confined structures, with the confined structures being in one-to-one correspondence with the heater structures and being spaced from one another by one or more insulative materials that entirely laterally surround each of the confined structures. Some embodiments include memory arrays having heater structures over an array of electrical nodes. Confined phase change material structures are over the heater structures and in one-to-one correspondence with the heater structures. The confined phase change material structures are spaced from one another by one or more insulative materials that entirely laterally surround each of the confined phase change material structures.
Abstract:
Memory cells having heaters with angled sidewalls and methods of forming the same are described herein. As an example, a method of forming an array of resistive memory cells can include forming a first resistive memory cell having a first heater element angled with respect to a vertical plane, forming a second resistive memory cell adjacent to the first resistive memory cell and having a second heater element angled with respect to the vertical plane and toward the first heater, and forming a third resistive memory cell adjacent to the first resistive memory cell and having a third heater element angled with respect to the vertical plane and away from the first heater element.
Abstract:
Phase change memory apparatuses include memory cells including phase change material, bit lines electrically coupled to aligned groups of at least some of the memory cells, and heating elements electrically coupled to the phase change material of the memory cells. The heating elements include vertical portions extending in a bit line direction. Additional phase change memory apparatuses include dummy columns positioned between the memory columns and base contact columns. The dummy columns include phase change memory cells and lack heating elements coupled to the phase change memory cells thereof. Additional phase change memory apparatuses include heating elements operably coupled to phase change memory cells. An interfacial area between the heating elements and the phase change memory cells has a length that is independent of a bit line width. Methods relate to forming such phase change memory apparatuses.
Abstract:
Some embodiments include an integrated assembly having a first bottom electrode adjacent to a second bottom electrode. An intervening region is directly between the first and second bottom electrodes. Capacitor-insulative-material is adjacent to the first and second bottom electrodes. The capacitor-insulative-material is substantially not within the intervening region. Top-electrode-material is adjacent to the capacitor-insulative-material. Some embodiments include methods of forming integrated assemblies.
Abstract:
Some embodiments include an assembly having first and second pillars. Each of the pillars has an inner edge and an outer edge. A first gate is proximate a channel region of the first pillar. A second gate is proximate a channel region of the second pillar. A shield line is between the first and second pillars. First and second bottom electrodes are over the first and second pillars, respectively; and are configured as first and second angle plates. An insulative material is over the first and second bottom electrodes. The insulative material may be ferroelectric or non-ferroelectric. A top electrode is over the insulative material. Some embodiments include methods of forming assemblies.
Abstract:
Methods, systems, and devices for techniques to manufacture ferroelectric memory devices are described. In some cases, a memory array may be manufactured using a self-aligned manufacturing technique. For example, a continuous layer of dielectric material may be formed over an assembly which includes an array of transistors coupling contacts on the surface of the assembly with a set of digit lines. In some cases, an array of cavities may be etched into the dielectric material, each cavity exposing a set of contacts. A set of bottom electrodes corresponding to the set of contacts may be formed on sidewalls in each cavity, for example by depositing a layer of electrode material and etching the electrode material using a variety of hard masks.
Abstract:
Methods, systems, and devices for a ferroelectric memory architecture are described. A memory architecture may include a gap region between memory cells to reduce a capacitance between plates coupled with the memory cells. The gap region may include a fluid, such as air, which may have a relatively low dielectric constant to reduce a capacitance between plates and reduce (e.g., eliminate) undesirable coupling between plates during memory operations. Implementing the gap region between memory cells enables a memory device to increase speed and reduce resource consumption associated with memory operations
Abstract:
Systems, apparatuses, and methods related to memory activation timing management are described herein. In an examples, memory activation timing management can include receiving a first command associated with a set of memory cells, activating the set of memory cells to perform a memory access responsive to the first command, pre-charging the set of memory cells associated with the first command, receiving a second command associated with the set of memory cells, determining that the set of memory cells associated with the first command is a recently activated set of the plurality of sets of memory cells, imparting a delay, and applying a sensing voltage to the set of memory cells associated with the second command to perform a memory access responsive to the second command.
Abstract:
Some embodiments include an integrated assembly having a row of conductive posts. The conductive posts are spaced from one another by gaps. Leaker device material extends is within at least some of the gaps. An insulative material is along sidewalls of the conductive posts. A conductive structure is over the conductive posts. The conductive structure has downward projections extending into at least some of the gaps. The leaker device material is configured as segments along sides of the downward projections and extends from the sides to one or more of the conductive posts. Some embodiments include methods of forming integrated assemblies.