Abstract:
Technology is disclosed herein for optimizing data caches among multiple interconnected computing devices. According to at least one embodiment, a storage server transfers a first data set to a computing device. The storage server then identifies a neighbor computing device sharing a local area network (LAN) with the computing device. The neighbor computing device maintains a network connection with the storage server. The storage server transmits a second data set relevant to the first data set to the neighbor computing device. In response to a read request for the second data set from the computing device, the storage server sends to the computing device an instruction indicating that the neighbor computing device is storing a data cache for the computing device.
Abstract:
Technology is disclosed herein for client side data encryption with a recovery mechanism. According to at least one embodiment, a computing device encrypts at least one data set into an encrypted data set using a private encryption key. The computing device encrypts the private encryption key using a password provided by a user of the device. The password is also encrypted using the user's answers to password recovery questions. The encrypted data set, the encrypted key and the encrypted password are transmitted to and stored by a server. The computing device can retrieve and decrypt the encrypted data set form the server. The encryption key can be recovered by decrypting the encrypted key using the password. The password can be recovered by decrypting the encrypted password using answers to the password recovery questions provided by the user.
Abstract:
Technology is disclosed herein for data synchronization based on file system activities. According to at least one embodiment, a computing device monitors one or more file system operations for a file stored in the computing device. The computing device records the file system operations for the file sequentially into a log data structure. The computing device synchronizes the file with a server by sending the log data structure to the server. The server can apply the file system operations recorded in the log data to an instance of the file stored in the server such that data of the file stored in the computing device are consistent with data in the instance of the file stored in the server after the file system operations are applied.
Abstract:
Techniques introduced here enable cloud-based file prefetching for gaming applications running on electronic devices. The electronic devices store certain gaming data files on a remote storage server and preload some of the files locally to include file access efficiency. Gaming data file access patterns on the electronic devices are analyzed, individually and collectively, using a cloud service to detect global access patterns and help determine which gaming data files to preload on each of the electronic devices.
Abstract:
Technology for a method for backing up and restoring game application state across multiple devices is disclosed herein. The method includes running an instance of a game application at a first electronic device, determining a backup event that occurs in the first electronic device, wherein the backup event suggests a backup of application state data and the application state data represent an application state of the game application at the backup event, and transmitting the application state data of the game application to a remote storage service, in response to the backup event. A second electronic device can retrieve the application state data from the remote storage service and restore the game application state.
Abstract:
Technology for a method for backing up and restoring mobile game application state across multiple devices is disclosed herein. The method includes running an instance of a game application at a first electronic device, determining a backup event that occurs in the first electronic device, wherein the backup event suggests a backup of application state data and the application state data represent an application state of the game application at the backup event, and transmitting the application state data of the game application to a remote storage service, in response to the backup event. A second electronic device can retrieve the application state data from the remote storage service and restore the game application state.
Abstract:
Technology is disclosed for migrating at least portions of a video streaming application to a cloud server. The migration is based on an optimization factor of a video streaming application. The optimization factor can be computed based on consumption of computing resources of the computing device. The video streaming application is a multi-threaded application in which a background thread performs tasks that may not require user interaction and a foreground thread performs tasks that may require user interaction. A service component of the video streaming application that obtains video streaming data from video servers is one example of the background thread. A user interface component that displays the video streaming data to a user via a user interface is an example of the foreground thread. If the optimization factor of the service component is below a predefined threshold, the service component is transferred to the cloud server for further processing.
Abstract:
Technology is disclosed for data prefetching on a computing device utilizing a cloud based file system. The technology can receive a current execution state and a data access pattern associated with an instance of an application executing on a computing device. The technology can further receive a data access pattern associated with another instance of the application executing on another computing device. The technology can utilize the received data access patterns to determine one or more future access requests for a subset of data associated with the application, where the one or more future access requests is a function of the current execution state of the application executing on the computing device. The technology can generate a prefetching profile utilizing the determined subset of data.
Abstract:
Technology is disclosed herein for migrating execution of at least a portion of a photo application to a server. According to at least one embodiment, a computing device monitors the photo application executing at the mobile device to identify a background thread and a foreground thread of the photo application, determine a current workload of the mobile device, transmit a received photo and an instance of the background thread to the server when the determined current workload exceeds a predefined threshold, receive a processed photo from the server, and provide access to the processed photo through the mobile device using the user interface generated by the foreground thread of the photo application.
Abstract:
Techniques for a method for automatically synchronizing application state across multiple devices are disclosed herein. The method includes running an instance of a computer application at a first electronic device, detecting a presence of a second electronic device based on a proximity of the second electronic device to the first electronic device, identifying an installation of another instance of the computer application on the second electronic device, and transmitting an application state data to the second electronic device. The application state data represents an application state of the computer application at the first electronic device. The application state data of the computer application enables another instance of the computer application at the second electronic device to resume running the computer application from the transmitted application state.