Abstract:
A tool for engaging a telecommunications connector within a slot so that a releasable latch of the connector is released by the tool. The tool may be used to remove a telecommunications connector from a mating opening of a receptacle or may be used to insert a connector within a receptacle.
Abstract:
A fiber optic connector includes a front housing having sidewalls each defining a slot and a rear insert with a pair of locking flanges extending radially away, the locking flanges configured to snap-fit into the slots, each locking flange defining a front face and a rear face, the radially outermost portion of the rear face defining an edge, the edge being the rearmost extending portion of the locking flange. Another fiber optic connector includes a front housing defining a front opening at a front end, a circular rear opening at a rear end, and an internal cavity extending therebetween. A rear insert including a generally cylindrical front portion is inserted into the front housing through the circular rear opening, the front portion defining at least one longitudinal flat configured to reduce the overall diameter of the generally cylindrical front portion configured to be inserted into the front housing.
Abstract:
A connector including a housing having a distal end and a proximal end has a ferrule assembly having a ferrule and a ferrule spring. The ferrule spring biases the ferrule in a distal direction. A boot is mounted at the proximal end. The boot has a distal end mounting over the proximal end of the housing and a proximal end and defines a central axis. A central passage extends through a length of the boot. A strain relief portion is adjacent the proximal end of the boot and has a truncated, conical outer shape formed by co-axial rings separated by gaps, the rings being interconnected by links extending across the gaps. The central passage has a proximal portion corresponding to a length of the strain relief portion that defines a transverse cross-dimension A majority of the rings have radial thicknesses at least 50 percent as long as the transverse cross-dimension.
Abstract:
A telecommunications assembly includes a chassis with a top wall, a bottom wall, a front opening, a rear opening, and first and second transverse sidewalls extending between the front and rear openings, the top wall and bottom walls defining slots. Upper mounting guides defining upper key slots between adjacent upper guides and lower mounting guides defining lower key slots between adjacent lower guides are mounted to the top and bottom walls. The upper and lower guides define snap-fit structures inserted into the slots defined on the top and bottom walls for mounting the upper and lower guides to the chassis. At least one of the upper and the lower mounting guides defines adapter mounts for slidably receiving fiber optic adapters through the rear opening. Fiber optic modules are slidably received within the chassis through the front opening and each module is slidably inserted into the upper and lower key slots of the chassis, each module removable from the chassis through the front opening. A fiber optic adapter that is separate from the module may be slidably received within the chassis through the rear opening into one of the adapter mounts, the fiber optic adapter removable through the rear opening. The module may include at least one connector that protrudes from the module that is adapted to be inserted into the adapter when the module is inserted into the chassis.
Abstract:
A connector and method for assembling a connector. The connector includes a ferrule that is retainably engaged within a hub. The connector further includes a rear housing and a front housing. The front housing is sized to receive and rotationally retain the hub. The front housing has a bore that receives and engages the exterior surface of a rear housing. The front and rear housing include engagement members that allow the rear housing to be retained within the front housing. A grip housing slideably mounts to the front housing. A boot mounts to the rear housing and terminates before the grip. An inner passage of the rear housing includes a flared passage adjacent to the hub.
Abstract:
A connector includes a ferrule assembly having a ferrule, a hub and a spring, the ferrule having a distal face accessible at a distal end of the connector housing, the ferrule being movable in a proximal direction relative to the connector housing. The distal and proximal positions are separated by an axial displacement distance. The ferrule proximal movement is against the spring's bias. The cable of the assembly includes an optical fiber contained within a jacket and also a strength layer between the fiber and the jacket that is anchored to the connector housing. The fiber extends through a fiber passage from the proximal end of the connector housing to the ferrule. The fiber has a distal portion potted within the ferrule. The fiber passage has a fiber take-up region configured to take-up an excess length of the fiber corresponding to the ferrule axial displacement.
Abstract:
A connector including a housing having a distal end and a proximal end has a ferrule assembly having a ferrule and a ferrule spring. The ferrule spring biases the ferrule in a distal direction. A boot is mounted at the proximal end. The boot has a distal end mounting over the proximal end of the housing and a proximal end and defines a central axis. A central passage extends through a length of the boot. A strain relief portion is adjacent the proximal end of the boot and has a truncated, conical outer shape formed by co-axial rings separated by gaps, the rings being interconnected by links extending across the gaps. The central passage has a proximal portion corresponding to a length of the strain relief portion that defines a transverse cross-dimension A majority of the rings have radial thicknesses at least 50 percent as long as the transverse cross-dimension.
Abstract:
A hardened fiber optic connector includes a unitary housing that mounts a connector body. The hardened fiber optic connector terminates a fiber optic cable including a strength layer and can be connected to a hardened fiber optic adapter. The unitary housing can transfer loads between the fiber optic cable and the hardened fiber optic adapter.
Abstract:
A telecommunications assembly including a housing and a plurality of modules mounted within the housing. The modules includes a rear face in which is mounted at least one fiber optic connector. Within an interior of the housing are positioned at least one fiber optic adapters. Inserting the module through a front opening of the housing at a mounting location positions the connector of the module for insertion into and mating with the adapter of the housing. The adapters within the interior of the housing are mounted to a removable holder. A method of mounting a telecommunications module within a chassis.
Abstract:
An edge protector for use with fiber optic cables includes a body having a first portion and a second portion. The first portion includes a first surface and an oppositely disposed second surface. The second portion includes a tang and a radius protrusion having a radius. The tang extends outwardly from the radius protrusion such that the tang extends beyond the second surface.