Abstract:
An image processing apparatus comprising an interpolation processing unit configured to generate a plurality of interpolation images based on a plurality of viewpoint images. The image processing apparatus further comprises a development processing unit configured to develop a subject image based on a development parameter and a plurality of ray vectors associated with the plurality of interpolation images and the plurality of viewpoint images.
Abstract:
An image pickup apparatus includes: an image pickup lens having an aperture stop; an image pickup device obtaining image pickup data based on light detected; one or more microlenses arranged between the image pickup lens and the image pickup device so as to correspond to a plurality of pixels in a partial region of the image pickup device; and an image processing section performing image processing based on the image pickup data obtained from the image pickup device, in which the image processing section includes: a distance measurement section measuring a distance from the image pickup lens to a measurement object based on pixel data in the partial region of the image pickup device, and an interpolation section interpolating pixel data for the partial region of the image pickup device.
Abstract:
The present technique relates to an image processing apparatus and an image processing method capable of obtaining an obstacle-removed image in which an obstacle does not appear using disparity information. A removal section generates after-removal photographic images at a plurality of viewpoints by removing part of subjects from respective photographic images at the plurality of viewpoints using disparity information associated with the photographic images at the plurality of viewpoints. An image generation section generates an obstacle-removed image at a predetermined viewpoint by registering the after-removal photographic images at the plurality of viewpoints using the disparity information. The present technique is applicable to a case, for example, of generating an obstacle-removed image in which an obstacle does not appear using photographic images at a plurality of viewpoints.
Abstract:
The present disclosure relates to an image processing apparatus and a method capable of generating high-definition viewpoint interpolation images at high speed. A space reconstruction unit reconstructs a space in which viewpoint images are photographed according to each viewpoint image and each disparity (pixel shift amount) map and supplying reconstruction data of the space to an interpolation position setting unit. The interpolation position setting unit sets an interpolation position in the reconstructed space while changing (an inclination of) a beam and supplies interpolation target coordinates indicating the set interpolation position to a data search unit. The data search unit generates an interpolation image at any viewpoint by sampling RGB values at interpolation target coordinates supplied from the interpolation position setting unit and outputs the generated interpolation image to a subsequent stage. The present disclosure is applicable to, for example, an image processing apparatus that performs image processing using multi-view images.
Abstract:
According to an embodiment of the present technology, there is provided an image processing apparatus including a parallax information generation unit. The parallax information generation unit generates parallax information based on a first phase difference distribution and a second phase difference distribution, the first phase difference distribution being generated on a pixel by pixel basis for the first parallax image and the second parallax image, the second phase difference distribution being generated on a sub-pixel by sub-pixel basis based on the first phase difference distribution.
Abstract:
There is provided an image processing apparatus including a distance information generation portion configured to generate first distance information about an object to be measured based on a phase difference between images provided by a plurality of first cameras having a first base length, and generate second distance information about the object to be measured based on a phase difference between images provided by a plurality of second cameras having a second base length that is different from the first base length; and a distance extraction portion configured to extract distance information from an imaging position and the object to be measured based on the first distance information and the second distance information.
Abstract:
There is provided an image processing apparatus including a display configured to display a captured image and a representative icon, wherein the representative icon indicates a range of a focus area of the displayed image and the range encompasses a center of focus point located at an initial position within the displayed image, and a processor configured to adjust the range of the focus area of the displayed image according to a size of the representative icon.
Abstract:
An input/output device capable of displaying a high-resolution two-dimensional image and detecting the position of an object in three-dimensional space in spite of having a low profile is provided. An input/output device includes: a display section including, in a mixed manner, image pickup regions for obtaining image pickup data of an object and a display region for displaying an image based on image data; a microlens arranged on a display surface of the display section so as to correspond to each of the image pickup regions; and a position detection section detecting position of the object based on image pickup data obtained from the image pickup regions of the display section.
Abstract:
An input/output device capable of displaying a high-resolution two-dimensional image and detecting the position of an object in three-dimensional space in spite of having a low profile is provided. An input/output device includes: a display section including, in a mixed manner, image pickup regions for obtaining image pickup data of an object and a display region for displaying an image based on image data; a microlens arranged on a display surface of the display section so as to correspond to each of the image pickup regions; and a position detection section detecting position of the object based on image pickup data obtained from the image pickup regions of the display section.