Abstract:
A microelectronic assembly can include a substrate having first and second surfaces each extending in first and second transverse directions, a peripheral edge extending in the second direction, first and second openings extending between the first and second surfaces, and a peripheral region of the second surface extending between the peripheral edge and one of the openings. The assembly can also include a first microelectronic element having a front surface facing the first surface, a rear surface opposite therefrom, and an edge extending between the front and rear surfaces. The assembly can also include a second microelectronic element having a front surface facing the rear surface of the first microelectronic element and projecting beyond the edge of the first microelectronic element. The assembly can also include a plurality of terminals exposed at the second surface, at least one of the terminals being disposed at least partially within the peripheral region.
Abstract:
A microelectronic package can include a substrate having first and second opposed surfaces, and first and second microelectronic elements having front surfaces facing the first surface. The substrate can have a plurality of substrate contacts at the first surface and a plurality of terminals at the second surface. Each microelectronic element can have a plurality of element contacts at the front surface thereof. The element contacts can be joined with corresponding ones of the substrate contacts. The front surface of the second microelectronic element can partially overlie a rear surface of the first microelectronic element and can be attached thereto. The element contacts of the first microelectronic element can be arranged in an area array and are flip-chip bonded with a first set of the substrate contacts. The element contacts of the second microelectronic element can be joined with a second set of the substrate contacts by conductive masses.
Abstract:
A microelectronic assembly includes a dielectric element that has oppositely-facing first and second surfaces and first and second apertures extending between the surfaces. The dielectric element further includes conductive elements. First and second microelectronic elements are stacked one on top of the another. The second microelectronic element has a plurality of contacts at a surface, which is spaced from the first surface of the dielectric element. Leads extend from contacts of the first and second microelectronic elements through respective apertures to at least some of the conductive elements. A heat spreader is thermally coupled to at least one of the first microelectronic element or the second microelectronic element.
Abstract:
A microelectronic assembly can include a substrate having oppositely-facing first and second surfaces and a first aperture extending between the first and second surfaces, a first microelectronic element having a surface facing the first surface, a second microelectronic element having a front surface facing the first microelectronic element, signal leads connected to contacts of the second microelectronic element and extending through the first aperture to at least some of a plurality of electrically conductive elements on the substrate, and at least one power regulation component having active circuit elements therein disposed between the first surface of the substrate and the front surface of the second microelectronic element. The first microelectronic element can have another surface remote from the surface of the first microelectronic element, and an edge extending between the surfaces thereof. The contacts of the second microelectronic element can project beyond the edge of the first microelectronic element.
Abstract:
Packaged microelectronic elements are provided which include a dielectric element, a cavity, a plurality of chip contacts and a plurality of package contacts, and microelectronic elements having a plurality of bond pads connected to the chip contacts.
Abstract:
A microelectronic package includes a subassembly including a first substrate and first and second microelectronic elements having contact-bearing faces facing towards oppositely-facing first and second surfaces of the first substrate and each having contacts electrically connected with the first substrate. The contact-bearing faces of the first and second microelectronic elements at least partially overlie one another. Leads electrically connect the subassembly with a second substrate, at least portions of the leads being aligned with an aperture in the second substrate. The leads can include wire bonds extending through an aperture in the first substrate and joined to contacts of the first microelectronic element aligned with the first substrate aperture. In one example, the subassembly can be electrically connected with the second substrate using electrically conductive spacer elements.
Abstract:
A method is disclosed of fabricating a microelectronic package comprising a substrate overlying the front face of a microelectronic element. A plurality of metal bumps project from conductive elements of the substrate towards the microelectronic element, the metal bumps having first ends extending from the conductive elements, second ends remote from the conductive elements, and lateral surfaces extending between the first and second ends. The metal bumps can be wire bonds having first and second ends attached to a same conductive pad of the substrate. A conductive matrix material contacts at least portions of the lateral surfaces of respective ones of the metal bumps and joins the metal bumps with contacts of the microelectronic element.
Abstract:
A method is disclosed of fabricating a microelectronic package comprising a substrate overlying the front face of a microelectronic element. A plurality of metal bumps project from conductive elements of the substrate towards the microelectronic element, the metal bumps having first ends extending from the conductive elements, second ends remote from the conductive elements, and lateral surfaces extending between the first and second ends. The metal bumps can be wire bonds having first and second ends attached to a same conductive pad of the substrate. A conductive matrix material contacts at least portions of the lateral surfaces of respective ones of the metal bumps and joins the metal bumps with contacts of the microelectronic element.
Abstract:
A microelectronic assembly can include a substrate having an aperture extending between first and second surfaces thereof, the substrate having substrate contacts at the first surface and terminals at the second surface. The microelectronic assembly can include a first microelectronic element having a front surface facing the first surface, a second microelectronic element having a front surface facing the first microelectronic element, and leads electrically connecting the contacts of the second microelectronic element with the terminals. The second microelectronic element can have contacts exposed at the front surface thereof beyond an edge of the first microelectronic element. The first microelectronic element can be configured to regenerate at least some signals received by the microelectronic assembly at the terminals and to transmit said signals to the second microelectronic element. The second microelectronic element can embody a greater number of active devices to provide memory storage array function than any other function.
Abstract:
A microelectronic package can include a substrate having first and second opposed surfaces, and first and second microelectronic elements having front surfaces facing the first surface. The substrate can have a plurality of substrate contacts at the first surface and a plurality of terminals at the second surface. Each microelectronic element can have a plurality of element contacts at the front surface thereof. The element contacts can be joined with corresponding ones of the substrate contacts. The front surface of the second microelectronic element can partially overlie a rear surface of the first microelectronic element and can be attached thereto. The element contacts of the first microelectronic element can be arranged in an area array and are flip-chip bonded with a first set of the substrate contacts. The element contacts of the second microelectronic element can be joined with a second set of the substrate contacts by conductive masses.