Abstract:
A fabricating method of a semiconductor structure includes the following steps. A gate material layer is formed on a semiconductor substrate. A patterned mask layer is formed on the gate material layer. The pattern mask layer includes at least one opening exposing a part of the gate material layer. An impurity treatment is performed to the gate material layer partially covered by the pattern mask layer for forming at least one doped region in the gate material layer. An etching process is performed to remove the gate material layer including the doped region. A dummy gate may be formed by patterning the gate material layer, and the impurity treatment may be performed after the step of forming the dummy gate. The performance of the etching processes for removing the gate material layer and/or the dummy gate may be enhanced, and the gate material residue issue may be solved accordingly.
Abstract:
The present invention provides a method for forming a semiconductor structure, including the following steps: first, a substrate is provided, an interlayer dielectric (ILD) is formed on the substrate, a first dummy gate is formed in the ILD, wherein the first dummy gate includes a dummy gate electrode and two spacers disposed on two sides of the dummy gate electrode respectively. Next, two contact holes are formed in the ILD at two sides of the first dummy gate respectively. Afterwards, the dummy gate electrode is removed, so as to form a gate recess in the ILD, a first material layer is filled in the gate recess and a second material layer is filled in the two contact holes respectively, and an anneal process is performed on the first material layer and the second material layer, to bend the two spacers into two inward curving spacers.
Abstract:
A fabricating method of a semiconductor structure includes the following steps. A gate material layer is formed on a semiconductor substrate. A patterned mask layer is formed on the gate material layer. The pattern mask layer includes at least one opening exposing a part of the gate material layer. An impurity treatment is performed to the gate material layer partially covered by the pattern mask layer for forming at least one doped region in the gate material layer. An etching process is performed to remove the gate material layer including the doped region. A dummy gate may be formed by patterning the gate material layer, and the impurity treatment may be performed after the step of forming the dummy gate. The performance of the etching processes for removing the gate material layer and/or the dummy gate may be enhanced, and the gate material residue issue may be solved accordingly.
Abstract:
The present invention provides a method for forming a semiconductor structure. Firstly, a substrate is provided, the substrate comprises an insulating layer and at least one first nano channel structure disposed thereon, a first region and a second region being defined on the substrate, next, a hard mask is formed within the first region, afterwards, an etching process is performed, to remove parts of the insulating layer within the second region, an epitaxial process is then performed, to form an epitaxial layer on the first nano channel structure, and an anneal process is performed, to transform the first nano channel structure and the epitaxial layer into a first nanowire structure, wherein the diameter of the first nanowire structure within the first region is different from the diameter of the first nanowire structure within the second region.
Abstract:
A semiconductor device having metal gate includes a substrate, a metal gate formed on the substrate, a pair of spacers formed on sidewalls of the metal gate, a contact etch stop layer (CESL) covering the spacers, an insulating cap layer formed on the metal gate, the spacers and the CESL, and an ILD layer surrounding the metal gate, the spacers, the CESL and the insulating cap layer. The metal gate, the spacers and the CESL include a first width, and the insulating cap layer includes a second width. The second width is larger than the first width. And a bottom of the insulating cap layer concurrently contacts the metal gate, the spacers, the CESL, and the ILD layer.
Abstract:
A method for manufacturing a semiconductor device having metal gate includes following steps. A substrate is provided. At least a transistor including a dummy gate is formed on the substrate and the transistor is embedded in an interlayer dielectric (ILD) layer. A first removal process is performed to remove a portion of the dummy gate to form a first recess in the transistor. An etching process is subsequently performed to remove a portion of the ILD layer to widen the first recess and to form a widened first recess. A second removal process is subsequently performed to remove the dummy gate entirely and to form a second recess in the transistor. A metal gate is formed in the second recess and followed by forming an insulating cap layer on the metal gate.
Abstract:
A semiconductor device is disclosed. The semiconductor device includes: a substrate having a gate structure thereon and a first interlayer dielectric (ILD) layer surrounding the gate structure; a first hard mask on the gate structure; and a second hard mask on the gate structure, wherein the first hard mask is adjacent to two sides of the second hard mask and the first hard mask and the first hard mask comprises silicon nitride.
Abstract:
A semiconductor device and a method of forming the same, the semiconductor device includes a plurality of fin shaped structures and a dummy gate structure. The fin shaped structures are disposed in a substrate, where at least one of the fin shaped structures has a tipped end. The dummy gate structure is disposed on the substrate, and includes an extending portion covering the tipped end.
Abstract:
The present invention provides a method of forming an integrated circuit including a substrate, a first transistor, a second transistor and a third transistor. The first transistor has a first metal gate including a first bottom barrier layer, a first work function metal layer and a first metal layer. The second transistor has a second metal gate including a second bottom barrier layer, a second work function metal layer and a second metal layer. The third transistor has a third metal gate including a third bottom barrier layer, a third work function metal layer and a third metal layer. The first transistor, the second transistor and the third transistor has the same conductive type. A nitrogen concentration of the first bottom barrier layer>a nitrogen concentration of the second bottom barrier layer>a nitrogen concentration of the third bottom barrier layer.
Abstract:
The present invention provides an integrated circuit including a substrate, a first transistor, a second transistor and a third transistor. The first transistor has a first metal gate including a first bottom barrier layer, a first work function metal layer and a first metal layer. The second transistor has a second metal gate including a second bottom barrier layer, a second work function metal layer and a second metal layer. The third transistor has a third metal gate including a third bottom barrier layer, a third work function metal layer and a third metal layer. The first transistor, the second transistor and the third transistor has the same conductive type. A nitrogen concentration of the first bottom barrier layer>a nitrogen concentration of the second bottom barrier layer>a nitrogen concentration of the third bottom barrier layer.