Abstract:
A semiconductor device includes a magnetic tunneling junction (MTJ) on a substrate, a first spacer on a first sidewall of the MTJ, and a second spacer on a second sidewall of the MTJ. Preferably, the first spacer and the second spacer are asymmetric, the first spacer and the second spacer have different heights, and a top surface of the MTJ includes a reverse V-shape.
Abstract:
A magnetoresistive random access memory (MRAM), including multiple cell array regions, multiple MRAM cells disposed in the cell array region, a silicon nitride liner conformally covering on the MRAM cells, an atomic layer deposition dielectric layer covering on the silicon nitride liner in the cell array region, wherein the surface of atomic layer deposition dielectric layer is a curved surface concave downward to the silicon nitride liner at the boundary of MRAM cells, and an ultra low-k dielectric layer covering on the atomic layer deposition dielectric layer.
Abstract:
A semiconductor device preferably includes a metal-oxide semiconductor (MOS) transistor disposed on a substrate, an interlayer dielectric (ILD) layer disposed on the MOS transistor, and a magnetic tunneling junction (MTJ) disposed on the ILD layer. Preferably, a top surface of the MTJ includes a reverse V-shape while the top surface of the MTJ is also electrically connected to a source/drain region of the MOS transistor.
Abstract:
A semiconductor device preferably includes a metal-oxide semiconductor (MOS) transistor disposed on a substrate, an interlayer dielectric (ILD) layer disposed on the MOS transistor, and a magnetic tunneling junction (MTJ) disposed on the ILD layer. Preferably, a top surface of the MTJ includes a reverse V-shape while the top surface of the MTJ is also electrically connected to a source/drain region of the MOS transistor.
Abstract:
A magneto-resistive random access memory (MRAM) cell includes a substrate having a dielectric layer disposed thereon, a conductive via disposed in the dielectric layer, and a cylindrical stack disposed on the conductive via. The cylindrical stack includes a bottom electrode, a magnetic tunneling junction (MTJ) layer on the bottom electrode, and a top electrode on the MTJ layer. A spacer layer is disposed on a sidewall of the cylindrical stack. The top electrode protrudes from a top surface of the spacer layer.
Abstract:
A method for fabricating semiconductor device includes the steps of: providing a substrate; forming a first gate structure on the substrate, a first spacer around the first gate structure, and an interlayer dielectric (ILD) layer around the first spacer; performing a first etching process to remove part of the ILD layer for forming a recess; performing a second etching process to remove part of the first spacer for expanding the recess; and forming a contact plug in the recess.
Abstract:
According to a preferred embodiment of the present invention, a semiconductor device is disclosed. The semiconductor device includes: a substrate having a first region and a second region; a first contact plug on the first region, and a second contact plug on the second region. Preferably, the first contact plug includes a first interfacial layer having a first conductive type and a first work function metal layer having the first conductive type on the first interfacial layer, and the second contact plug includes a second interfacial layer having a second conductive type and a second work function metal layer having the second conductive type on the second interfacial layer.
Abstract:
A method of forming a semiconductor structure is provided. A substrate having a memory region is provided. A plurality of fin structures are provided and each fin structure stretching along a first direction. A plurality of gate structures are formed, and each gate structure stretches along a second direction. Next, a dielectric layer is formed on the gate structures. A first patterned mask layer is formed, wherein the first patterned mask layer has a plurality of first trenches stretching along the second direction. A second patterned mask layer on the first patterned mask layer, wherein the second patterned mask layer comprises a plurality of first patterns stretching along the first direction. Subsequently, the dielectric layer is patterned by using the first patterned mask layer and the second patterned mask layer as a mask to form a plurality of contact vias. The contact holes are filled with a conductive layer.
Abstract:
A method of manufacturing a semiconductor device includes: providing a semiconductor having active regions; depositing a dielectric layer on the semiconductor; forming a patterned etch mask on the dielectric layer; depositing a further dielectric layer on the dielectric layer and the patterned etch mask; planarizing the further dielectric layer until the patterned etch mask is exposed; and forming a further patterned etch mask having an opening on the further dielectric layer so that portions of the patterned etch mask are exposed from the opening.
Abstract:
Semiconductor devices having metal gate include a substrate, a first nFET device formed thereon, and a second nFET device formed thereon. The first nFET device includes a first n-metal gate, and the first n-metal gate includes a third bottom barrier metal layer and an n type work function metal layer. The n type work function metal layer directly contacts the third bottom barrier layer. The second nFET device includes a second n-metal gate and the second n-metal gate includes a second bottom barrier metal layer, the n type work function metal layer, and a third p type work function metal layer sandwiched between the second bottom barrier metal layer and the n type work function metal layer. The third p type work function metal layer of the second nFET device and the third bottom barrier metal layer of the first nFET device include a same material.