Abstract:
A method for modeling additive manufacturing of a part, includes (i) constructing a model for estimating output of a simulated additive manufacturing process based upon part design, energy equation and at least one additional relationship selected from the group consisting of phase field equation, concentration equation and stress equation; (ii) entering process operating parameters into the model to produce an output; (iii) comparing the output to acceptance criteria to determine whether the output is acceptable or unacceptable; (iv) for acceptable output, adding operating parameters which resulted in the acceptable output to a process map for additive manufacturing the part; and (v) repeating steps (ii) through (iv) for different operating parameters until the process map is complete.
Abstract:
A rotating tool system attachment on the spindle of a computer numerical control (“CNC”) machine includes a rotating assembly mounted on a static assembly. The rotating assembly provides a continuous supply of a wire material for deposition on a substrate during an additive manufacturing process. The rotating assembly includes a material supply housing a feedstock of wire mounted on a rotating spindle and a wire feeder configured to draw the wire from the wire supply and provide the wire for application during the additive manufacturing process. The tool system can be attached to the spindle of CNC machine to provide additive manufacturing capabilities to the CNC machine.
Abstract:
A method includes accessing a first model defining a shape of a part. The shape of the part is segregated into a plurality of predefined shapes selected from a library of predefined shapes. The predefined models for each of plurality of predefined shapes are assembled into a second model defining the shape of the part. The part is additively manufactured according to the second model.
Abstract:
A manufacturing process includes collecting metal chips produced by a subtractive manufacturing processes and sorting the metal chips. The process further includes heating the metal chips to form a melt, removing impurities from the melt, deoxidizing the melt and atomizing the melt to form metal powder. The powder is then used to form a metal part by additive manufacturing or powder metallurgy processes.
Abstract:
A pressure vessel configured to store a pressurized fluid is provided including a plurality of lobes. Each lobe includes at least one vertically arranged interior wall. The plurality of lobes are positioned in a side by side configuration such that a first interior wall of a first lobe is positioned adjacent a second interior wall of a second adjacent lobe. The first interior wall and the second interior wall are configured to contact one another at a first point of tangency. A first tangent intersects the first lobe at the first point of tangency and a second tangent intersects the second lobe at the first point of tangency. The first tangent and the second tangent are separated by about 120 degrees.
Abstract:
One embodiment includes a method for enhancing bond strength between a powder deposit and a substrate. Powder is deposited on the substrate. Powder is shot peened with peening media that is harder than both the powder and the substrate to produce bond strength between the powder and the substrate that is at least twice bond strength between the powder and the and peening material substrate without shot peening.
Abstract:
A method of fabricating a functionally graded turbine engine component is disclosed and includes the step of depositing layers of powder onto a base and solidifying/fusing each layer with a first directed energy beam to define a component. The method further includes varying a process parameter between deposited layers to define different material properties within the component. The method also proposes surface enhancement approach that can be used after depositing each layer to locally customize the material properties. The method also proposes machining the different internal surfaces to achieve the proper surface finishing required.