Abstract:
In a method of determining a position of a touch on a capacitive sensor field having a grid of a plurality of discrete electrodes (12), contacted electrodes are determined by measuring a capacitance value for each of the electrodes and by checking for each of the electrodes for the measured capacitance value whether this value is above a predefined threshold value. A rough touch position (Bg) is calculated by weighting the electrode position with the measured capacitance value. A touch diameter (14) is calculated from the measured capacitance values, and a final touch position (Be) is calculated from the rough touch position (Bg) and the calculated touch diameter (14) using a value table in which correction values that were determined empirically or by means of simulation are stored for possible rough touch positions (Bg) and given touch diameters (14).
Abstract:
An optical sensor device for the detection of ambient light is adapted to be coupled to a pane (10), in particular to a windshield of a vehicle. The optical sensor device has a sensor unit which includes at least one light receiver (22) for ambient light and a lens plate (12) for directionally coupling an ambient light beam (26) out of the pane (10) onto the light receiver (22). The lens plate (12) has a surface (18) facing the light receiver (22) and oriented substantially parallel to the pane (10) in the coupled condition of the optical sensor device. The surface (18) includes a prism structure (20) having a plurality of single prisms (24) which are designed to direct the rays of a specific ambient light beam (26) defined by a principal direction (A) and an aperture angle onto the light receiver (22).
Abstract:
An optical sensor device (10) is able to be coupled to a window (14), in particular to a windscreen of a motor vehicle. The optical sensor device (10) comprises a sensor unit (12), which includes a emitter (26), a receiver (28) and a light conductor unit (30). By the light conductor unit (30), a light beam (34) emitted by the emitter (26) is coupled into the window (14), coupled out of the window (14) and directed onto the receiver (28). The light conductor unit (30) includes Fresnel lens regions and associated reflecting regions.
Abstract:
An optical sensor device has a sensor unit, which includes a light transmitter, a light receiver and a lens plate, with which a beam of light emitted by the light transmitter is coupled into the window pane, coupled out of the window pane and directed onto the light receiver. On its surface facing the light transmitter and the light receiver, the lens plate includes Fresnel lens structures, and on the opposite surface facing the window pane it includes Fresnel reflector structures. This embodiment is particularly useful as rain sensor. Without light transmitter, the sensor device can be used as a light sensor.
Abstract:
An optical sensor device (10) is able to be coupled to a window (14), in particular to a windscreen of a motor vehicle. The optical sensor device (10) comprises a sensor unit (12), which includes a emitter (26), a receiver (28) and a light conductor unit (30). By the light conductor unit (30), a light beam (34) emitted by the emitter (26) is coupled into the window (14), coupled out of the window (14) and directed onto the receiver (28). The light conductor unit (30) includes Fresnel lens regions and associated reflecting regions.
Abstract:
An optical rotation angle transmitter includes a code disc that has a digital coding and an analog coding. The digital coding has multiple tracks and is configured so as to be secure against error. A current angle interval can be determined from a plurality of possible angle intervals by means of the digital coding, and a precise angle position of the code disc can be determined within the current angle interval by means of the analog coding. Each of the tracks of the digital coding has a light sensor associated with it. Further provided is a method of scanning a code disc of a rotation angle transmitter.