Abstract:
A magnetoresistive random access memory (MRAM), including a bottom electrode layer on a substrate, a magnetic tunnel junction stack on the bottom electrode layer, and a top electrode layer on the magnetic tunnel junction stack, wherein the material of top electrode layer is titanium nitride, and the percentage of nitrogen in the titanium nitride gradually decreases from the top surface of top electrode layer to the bottom surface of top electrode layer.
Abstract:
A magneto-resistive random access memory (MRAM) cell includes a substrate having a dielectric layer disposed thereon, a conductive via disposed in the dielectric layer, and a cylindrical stack disposed on the conductive via. The cylindrical stack includes a bottom electrode, a magnetic tunneling junction (MTJ) layer on the bottom electrode, and a top electrode on the MTJ layer. A spacer layer is disposed on a sidewall of the cylindrical stack. The top electrode protrudes from a top surface of the spacer layer.
Abstract:
A semiconductor structure and a method for manufacturing the same are provided. The semiconductor structure comprises a substrate, a gate structure, a first dielectric layer and two air gaps. The gate structure is disposed on the substrate. The gate structure has two opposite side walls. The gate structure comprises a U-shaped structure and a metal gate electrode. The U-shaped structure defines an opening toward upside, and comprises a work function layer. The metal gate electrode is disposed in the opening defined by the U-shaped structure. A level of a top surface of the U-shaped structure is lower than a level of a top surface of the metal gate electrode. The first dielectric layer is disposed on the substrate adjacent to the gate structure. Each of the two air gaps is formed between the first dielectric layer and one of the two opposite side walls of the gate structure.
Abstract:
A semiconductor device includes a substrate, gate electrodes, spacers and contact structures. The gate electrodes are disposed on the substrate, and the spacers are disposed on the sidewalls of the gate electrodes. Each of the spacers has an inner sidewall and an outer sidewall. The contact structure is disposed between the gate electrodes, and its bottom is in direct contact with all the region of the outer sidewall of the spacers.
Abstract:
A semiconductor structure and a method for manufacturing the same are provided. The semiconductor structure comprises a substrate, a gate structure, a first dielectric layer and two air gaps. The gate structure is disposed on the substrate. The gate structure has two opposite side walls. The gate structure comprises a U-shaped structure and a metal gate electrode. The U-shaped structure defines an opening toward upside, and comprises a work function layer. The metal gate electrode is disposed in the opening defined by the U-shaped structure. A level of a top surface of the U-shaped structure is lower than a level of a top surface of the metal gate electrode. The first dielectric layer is disposed on the substrate adjacent to the gate structure. Each of the two air gaps is formed between the first dielectric layer and one of the two opposite side walls of the gate structure.
Abstract:
A semiconductor device includes: a substrate having a first fin-shaped structure and a second fin-shaped structure thereon, a shallow trench isolation (STI) around the first fin-shaped structure and the second fin-shaped structure, a gate isolation directly on the second fin-shaped structure, and a gate line on the STI and the first fin-shaped structure. Preferably, the gate line includes a L-shaped structure.
Abstract:
A process for fabricating a fin-type field effect transistor (FinFET) structure is described. A semiconductor substrate is patterned to form a fin. A spacer is formed on the sidewall of the fin. A portion of the fin is removed, such that the spacer and the surface of the remaining fin together define a cavity. A piece of a semiconductor compound is formed from the cavity, wherein the upper portion of the piece of the semiconductor compound laterally extends over the spacer.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a fin-shaped structure thereon and shallow trench isolation (STI) around the fin-shaped structure; forming a gate line across the fin-shaped structure and on the STI; performing a first cutting process to remove the part of the gate line directly above the fin-shaped structure and the fin-shaped structure directly under the gate line; and performing a second cutting process to remove part of the gate line on the STI.
Abstract:
A complementary metal oxide semiconductor field-effect transistor (MOSFET) includes a substrate, a first MOSFET and a second MOSFET. The first MOSFET is disposed on the substrate within a first transistor region and the second MOSFET is disposed on the substrate within a second transistor region. The first MOSFET includes a first fin structure, two first lightly-doped regions, two first doped regions and a first gate structure. The first fin structure includes a first body portion and two first epitaxial portions, wherein each of the first epitaxial portions is disposed on each side of the first body portion. A first vertical interface is between the first body portion and each of the first epitaxial portions so that the first-lightly doped region is able to be uniformly distributed on an entire surface of each first vertical interface.
Abstract:
A method for fabricating semiconductor device is disclosed. First, a substrate is provided, and a first mandrel, a second mandrel, a third mandrel, and a fourth mandrel are formed on the substrate. Preferably, the first mandrel and the second mandrel include a first gap therebetween, the second mandrel and the third mandrel include a second gap therebetween, and the third mandrel and the fourth mandrel include a third gap therebetween, in which the first gap is equivalent to the third gap but different from the second gap. Next, spacers are formed adjacent to the first mandrel, the second mandrel, the third mandrel, and the fourth mandrel, and the spacers in the first gap and the third gap are removed.